令和元年度石炭現場ニーズ等に対する技術支援事業
「褐炭改質技術による PCI 炭等の製鉄用高付加価値代替品の製造可能性の検討」に関する共同スタディ

報告書

2020年3月
独立行政法人石油天然ガス・金属鉱物資源機構
出光興産株式会社
目次

1. 共同スタディ概要...1
 1.1 共同スタディの目的..1
 1.2 共同スタディの全体計画..2
 1.3 共同スタディ内容...4
 1.4 成果の利用や波及などに関する具体的なイメージ..6
 1.5 実施体制..7

2. 山元情報 検討対象鉱区情報..8
 2.1 支援対象石炭鉱山と炭種..8
 2.2 海外パートナー会社情報Ⅰ（PTBA）...9
 2.3 海外パートナー会社情報Ⅱ（BSSR）...11

3. 検討対象とする褐炭改質プロセスの概要..13
 3.1 Cat-HTRプロセス...13
 3.2 Cat-HTRパイロットプラント..15
 3.3 鄭州中能 Coal Plusの概要..17

4. 原炭及びプロダクトの基礎特性...20
 4.1 原炭及、改質炭およびのセミコックスの一般性状...20
 4.2 合成油の一般性状..23
 4.3 セミコックス等の実用基礎特性...26

5. 褐炭セミコックスの高炉用 PCIへの利用検討...35
 5.1 スタディ検討の概要...35
 5.2 セミコックスの高炉 PCI用炭材としての実用性評価...35
 5.3 セミコックスの性状...36
 5.4 セミコックスの挿入時の評価...37
 5.5 羽口リースウェイ内での燃焼性の評価...40
 5.6 カーボンソリューションロス反応性の評価..44
 5.7 微粉炭燃焼時の SiO (g)の発生の評価...45
 5.8 灰分の浮化・同化、および、滴下性の評価...46
 5.9 PCIとしての実用性評価結果の総め...48

6. 褐炭セミコックスの鉄鉱石焼結用炭材としての実用性評価..49
 6.1 焼結鉱について...49
 6.2 焼結工程の技術課題...49
 6.3 鉄鉱石焼結炭材の製造とその性状..50
 6.4 混合造粒性（検定粒子化）..52
 6.5 焼結鉱の性状と組織...53
 6.6 焼結用炭素材としての評価結果の総め...56
7. 褐炭合成油等からのピッチ製造

7. 検討課題

7.2 検討手法

7.3 ピッチ化および炭化試験装置

7.4 石油系共炭化剤の選定と改質

7.5 ピッチの製造結果

7.6 ピッチ製造のまとめ

8. 事業性の1次FS

8.1 検討する事業モデル

8.2 プロセスの検討と構成

8.3 経済性算定

9. 本共同スタディの纏め

9.1 本共同スタディの纏め

10. 今後の課題

10.1 ピッチ製造の検討課題

10.2 セミロックスの製鉄用炭素材としての検討課題

57

57

57

59

63

64

66

67

67

68

69

75

75

77

77

79
図目次

図 1-1 共同スタディの全体計画..2
図 1-2 本スタディで検討する炭素材の技術開発課題..................................4
図 1-3 高機能炭素材原料ピッチ開発のイメージ......................................5
図 1-4 本共同スタディの実施体制..7
図 2-1 本スタディで用いた石炭鉱山...8
図 3-1 Cat-HTR のプロセス概念図...13
図 3-2 進行中の Cat-HTR プロセスを用いたプロジェクト (2)......................14
図 3-3 SPP プロセス概略フロー図...15
図 3-4 LPP プロセスの概略フロー図..16
図 3-5 Coal Plus の概念図..17
図 3-6 Coal Plus プロセスを用いた製品製造の概要..............................18
図 3-7 Coal Plus 熱分解炉模式図...18
図 4-1 合成油の付加価値向上手法..25
図 4-2 自然発熱性測定装置（SIT）..26
図 4-3 SIT による自然発熱性評価..27
図 4-4 熱重量分析計（TGA）...28
図 4-5 石炭、改質炭およびセミコーキスのバーニングプロファイル...............29
図 4-6 小型管状炉（DTF）...30
図 4-7 セミコークス A（VM20%）の燃焼プロファイル.............................31
図 4-8 セミコークス B（VM20%）の燃焼プロファイル.............................32
図 4-9 セミコークス A（VM2%）の燃焼プロファイル..............................32
図 4-10 石炭およびブロダクトの燃焼速度のアレニウスプロット....................33
図 5-1 高炉用 PCI 炭としての実用性評価項目 (3).................................35
図 5-2 試料の粒度分布..36
図 5-3 搬送試験装置の概要...37
図 5-4 搬送試験圧力損失測定結果..38
図 5-5 多目的燃焼炉（MPR）の概念図..40
図 5-6 セミコークスの燃焼状況（覗き窓より撮影）..................................41
図 5-7 炉内・粒子温度分布...42
図 5-8 燃焼チャーの形態..43
図 5-9 示差熱分析試験結果...44
図 5-10 ガス化反応にともなう灰中 SiO₂活量（aSiO₂）の変化.....................45
図 5-11 灰の溶融特性測定結果..46
図 6-1 燃結工程での技術課題 (3)...49
図 6-2 乾留コークスの外観...50
図 6-3 乾留コークス粉砕・調製後の粒径分布..51
表目次

表 2-1 PTBA の保有鉱山 ... 9
表 2-2 PTBA の概要 ... 9
表 2-3 C 炭鉱の生産計画 ... 9
表 2-4 PTBA の全石炭の生産実績 ... 10
表 2-5 PTBA 炭の日本への輸出実績 .. 10
表 2-6 BSSR 社の保有鉱山 ... 11
表 2-7 BSSR の概要 ... 11
表 2-8 A 炭の生産実績 .. 11
表 2-9 B 炭の生産実績 .. 11
表 2-10 A 炭の日本への輸出実績* .. 12
表 3-1 Coal Plus 開発計画（2015 年当時） 19
表 4-1 改質炭 A およびセミコークスの一般性状 20
表 4-2 改質炭 B およびセミコークスの一般性状 22
表 4-3 合成油及びタール油の元素分析値 ... 23
表 4-4 合成油およびタールの燃料油性状 .. 24
表 4-5 パーニングプロファイルからの解析 .. 29
表 5-1 セミコークス等の性状 ... 36
表 5-2 搬送性試験後の試料回収量と搬送流量 39
表 5-3 压力損失と搬送重量当たりの搬送負荷圧損 39
表 5-4 セミコークス等の燃焼効率 .. 43
表 6-1 乾留コークスの組成分析値 ... 51
表 6-2 焼結原料の成分 .. 52
表 7-1 製造したビッチと処理内容 .. 64
表 8-1 検討するケース毎のプロセス構成と製品 68
表 8-2 経済性試算のための前提 .. 69
表 8-3 ケース毎の経済性試算結果 .. 72
表 8-4 ニードルコークス収率の検討 .. 74
表 9-1 本スタディ結果の概要 .. 75
1. 共同スタディ概要

1.1 共同スタディの目的

製鉄プロセスにおいては、依然として原料炭から製造したコークスで鉄鉱石を還元する高炉操業が主流であるが、近年、中国や欧米を中心にスクラップ鉄を用いる電炉の増加や還元ガスを用いる直接還元製鉄プロセスが稼働を始めており、原料炭の資源量減少並びに品質低下の観点からも、世界的に高炉を用いないコークスレス操業へと向かいつつある。さらに、主流の高炉法においても、コークス節減の方向に進んでおり、PCI吹込み量の更なる増量を可能にするコークス置換率の高い低揮発分PCIグレード（揮発分20%程度以下）の炭素材の確保・開発が望まれている。

また、良質な原料炭から製造するコークスの副産物であるコーチタールから製造されるニードルコークス、黒鉛電極等の高機能炭素材は、今後もますます大きな需要の増加が見込まれているが、上記の理由から将来的なコーチタールの質と量の低下が懸念されている。

そこで、本共同スタディでは、インドネシア褐炭を改質して得られた固体プロダクトの高炉用PCI炭や焼結用炭素材としての実用性評価および液体プロダクトの高機能炭素材原料ビッチへの転換技術を検討する。

PCI炭は製鉄用高炉において、コークスに代わり熱源や鉄の還元剤としての役割を果たしており、その吹込み量は日本平均で約150kg/t（溶銑）に達している。粗鋼生産量を1億t、銅鉄生産量を7,600万tとすると（1）、1,200万t弱の需要があることになる。2019年度は石炭価格が低下し、現状マーケットでは低揮発分PCI炭（〜100$/t）は原料炭（〜150$/t）の7割程度、一般炭（〜70$/t）の5割増しの価格で取引されている。低揮発分PCI炭用炭は原料炭に同様に資源量減少と品質低下が危惧されており、褐炭から低揮発分PCI炭代替品が製造できれば、低揮発分PCI炭の需給緩和に繋がる可能性がある。

一方、液体プロダクトのビッチ化は将来のコーチタール不足問題の解決に資するものである。近年、炭素繊維やその複合材料は、航空機、自動車、風力発電ブレード、レジャー等の分野で一層の利用拡大が見込まれ、黒鉛電極、リチウム電池の負極、キャパシター等を含めたこれら高機能炭素材料の市場は、今後、每年10%程度の拡大が見込まれている。しかし、これら炭素素材の一翼を担うコーチタールはコークス製造の副産物であり、コークスレス製鉄法の進展（電炉の増加、新規直接還元製鉄法の台頭）や原料炭の品位低下に伴い、その供給量と品質低下が危惧されている。

そこで、本共同スタディでは、未利用の褐炭から、高機能炭素素材原となるビッチの製造技術の開発を企図し、将来のコーチタール不足を質、量の両面から補完することを目標とする。本技術は、製造した炭素材中に炭素が固定化され、最終消費段階でCO2を排出しないため、環境面での利点も有している。石炭ビッチは、現状はニッチな市場（世界1,200万t、日本20万t）であるが、各種炭素製品の原料の一翼を担っている。

今後、大きな成長が見込まれる高機能炭素材料の分野で、安価で未利用の褐炭から、これらノーブルユースへの活用の道が開ければ、当該分野で世界をリードする我が国の更なる国際競争力強化に繋がるため、本共同スタディの意義は大きいと言える。
1.2 共同スタディの全体計画

共同スタディの全体計画を図 1-1 に示す。

目的
未利用褐炭を用いて、鉄鋼用 PCI 等の高付加価値炭素材代替への
転換技術を開発し、その事業性について検討する

1. 褐炭改質産品の炭素材利用可能性検討、競争力のあるプロセスの検討
2. 可能性のある利用用途の商品設計の深掘と事業性の 1 次 FS
3. 経済性のあるビジネスモデルの構築、EPC 精査、事業性の 2 次 FS

1年目
基礎検討
◆炭素材利用可能性の 1 次スクリーニング
◆競争力のあるプロセスの調査・検討

2年目
事業性 1 次 FS
◆低投資事業に繋がるプロダクトの商品設計の深掘
◆最適プロセスによる事業性の 1 次 FS

3年目
事業性繰り
◆商品設計の最終仕上げ
◆事業性 2 次 FS

図 1-1 共同スタディの全体計画

本共同スタディはインドネシア等に大量に賦存する未利用で安価な褐炭をコプロダクション型プロセスで改質し、得られた合成油及び改質炭の高付加価値炭素材への転換可能性について、改質・製造技術、品質、市場性、経済性の面から総合的に事業性を検討するものである。以下に示すとおり、段階的なスタディを計画する。

1年目は、褐炭改質産品（液体プロダクトおよび固体プロダクト）の炭素材への利用可能性について前広に調査検討し、1 次スクリーニングを行った結果、以下のことが明らかとなった。

・合成油の高付加価値ピッチとしての利用検討
 反応としてポリ塩化ビニル（以下「PVC」という）を添加して改質したピッチの炭化物には、黒鉄構造に近づく炭素積層構造の指標である光学異方性組織（モザイク構造）が出現した。今後、高付加価値の炭素電極や炭素繊維原料への転換可能性が期待される。

・改質炭の高炉用還元剤ペレットとしての利用検討
 改質炭と粉鉱石および強度向上のためのセメントを混合し、ペレットを製造した。
 非焼成ペレットは圧縮強度が不足し、焼成ペレットは充分な強度が発現したが、改質
炭が消失したため、高炉用還元材とはならなかった。
・オイリーコール（固・液プロダクト未分離の半製品）のコース用炭としての利用検討
オイリーコールとコース用原料炭を混合したコースは、原料炭単味から製造したコースに比べ、コース強度（冷間および熱間強度）が著しく低下したため、コース用での利用はできない。

従って、半製品のオイリーコールは、原料炭ブレンド用炭素材としての利用は難しく、PCI（高炉用微粉炭吹込み）用の炭素材としての利用が現実的かつ経済的である。

今年度は、1次スクリーニングで高付加価値炭素材への転換可能性が見いだせた合成油等のビッチ化に絞り、更なる高品質ビッチ製造法の検討を行う。
また、1次スクリーニングで付加価値向上が見いだせなかった新規改質炭用途については、PCI等の製鉄用炭素材への利用を主体に商品設計の深耕を行う。
併せて、事業化を見据え、プロセスの競争力、商業機実績、プロセス毎のプロダクトの商品設計を加味した事業性の1次FSも並行して行う。

なお、3年目は、本共同スタディの纏めとして、商品設計の最終仕上げを行い、最適な事業モデルの構築と最適プロセスとそのEPCコストを精査して、これらをベースに2次FSを実施し、事業性の見極めを行う計画である。
1.3 共同スタディ内容

本共同スタディ（以下「スタディ」という。）で検討する炭素材の技術開発課題を図1-2に示す。異なる褐炭改質プロセスから得られるプロダクトを用いて炭素材としての利活用法を開発する。

本スタディでは、亜臨界水熱触媒反応のCat-HTR（Catalytic Hydrothermal reaction）プロセスから得られる固体プロダクトを改質炭、液体プロダクトを合成油と呼び、熱分解のCoal Plusプロセスから得られる固体プロダクトをセミコークス、液体プロダクトをタール油と呼ぶ。

液体プロダクト（合成油およびタール油）については、高機能炭素材原料ピッチへの転換技術を開発する。一方、Cat-HTRプロセスから得られる改質炭については、これまでの調査研究において、高炉用PCI代替として大変有望であることが分かっているが、より投資コストの低い熱分解プロセス（Coal Plus）から得られるセミコークスが同等の性能を持つかを確認し、早期事業化につなげる。また併せて焼結用炭素材としての実用性評価を行う。

図1-2 本スタディで検討する炭素材の技術開発課題

以下に、スタディ内容を列挙する。

(1) 商品設計の深耕

異なる方式の2つのコプロダクションプロセスから得られる固体、液体プロダクトにふさわしい最適商品設計を行う。これをもとにプロセス毎に事業性の1次FSを行い、低投資事業の可能性を検討する。また、製造所の残渣油等が、褐炭ピッチの共炭化ブレンド材として、質の向上に寄与できるのか検討を行う。

(2) ピッチの製造・評価—高機能炭素材原料ピッチの開発—

褐炭合成油を付加価値の高い炭素電極や炭素繊維原料ピッチに転換する技術を開発する。検討する開発のイメージを図1-3に示す。

昨年度に合成油から製造した光学異方性組織（モザイク構造）を出現させるメソフェー
ビッチについては、さらに良質の「流れ」構造に展開させる以下の方策を検討する。
・ビッチの溶融温度域で水素移行能を有する物質との共炭化
・系の溶融粘度を低下させる物質との共炭化
・ピッチそのもののマイルドな水素化
・およびこれらの組み合わせ手法により、流れ構造への展開を目指す。また、生成した球晶のみを分離して、高密度等方性炭素素材原料に転換可能かを検討する。
併せて、熱分解タール油についても、同手法で良質なビッチへの転換が可能か確認する。

<table>
<thead>
<tr>
<th>等方性・異方性ビッチが製造できた</th>
<th>今年度の検討課題</th>
<th>製品例</th>
</tr>
</thead>
<tbody>
<tr>
<td>鹼炭合成油</td>
<td>碳化物</td>
<td>高密度等方性炭素</td>
</tr>
<tr>
<td>融合・高分子</td>
<td>偏光顕微鏡</td>
<td>ニードル用</td>
</tr>
<tr>
<td>ポリ塩化ビニル</td>
<td>等方性ビッチ</td>
<td>ビッチ</td>
</tr>
<tr>
<td>触媒による還元・重組合反応</td>
<td>碳化・融解状態の改善</td>
<td>含浸</td>
</tr>
<tr>
<td>エライン</td>
<td>流れ構造</td>
<td>ビッチ</td>
</tr>
<tr>
<td>触媒による還元・重組合反応</td>
<td>粗粒ザイク構造</td>
<td>バインダー</td>
</tr>
<tr>
<td>碳化アルミニウム</td>
<td>等方性ビッチ</td>
<td>ヒット</td>
</tr>
<tr>
<td>塩化アルミニウム</td>
<td>等方性構造</td>
<td>球晶の離</td>
</tr>
<tr>
<td>塩化アルミニウム</td>
<td>等方性構造</td>
<td>等方性炭素素材</td>
</tr>
<tr>
<td>基礎的な処理条件を確立</td>
<td>等方性ビッチ修飾法の検討</td>
<td></td>
</tr>
</tbody>
</table>

図 1-3 高機能炭素材原料ビッチ開発のイメージ

（3）セミコースの実用性評価—PCI および焼結用炭素材特性—
Cat-HTR プロセスから得られる改質炭の優れた PCI 実用特性は把握済である。熱分解プロセスで製造された揮発分割合の異なるセミコースを用いて、揮発分割合の違いに応じた PCI および焼結用炭素材としての実用性評価を行う。

（4）スタディ取り纏め
全ての外注先の報告書を取り纏め、中間報告書およびスタディ報告書を作成する。
1.4 成果の利用や波及などに関する具体的なイメージ

① 褐炭合成油がピッチに転換が可能であれば、今後の原料炭の品位低下や高炉における低コークス比操業に伴うコールタール不足の補完に寄与できる。

② さらに、良質なピッチや炭素材原料に転換が可能であれば、今後世界的に需要増が見込まれている高機能炭素製品市場での我が国の国際競争力強化に貢献できる。

③ 褐炭改質炭が高炉用低揮発分PCI炭代替として普及すれば、低揮発分PCI炭の需給緩和に貢献できる。

仮に、褐炭350万t（水分40%）を改質すると改質炭約120万t* が得られる。

*我が国のPCI炭使用量の1割に相当
1.5 実施体制

本スタディの実施者は独立行政法人石油天然ガス・金属鉱物資源機構（以下「JOGMEC」という。）と出光興産株式会社（以下「出光興産㈱」という。）であり、検討項目に応じて適切な相手先へ外注委託（請負契約）して得た成果を取り纏める。炭素材の商品設計の深耕、事業性の1次FSならびに、スタディ取り纏め等を出光興産㈱石炭・環境研究所が実施する。ピッチの製造・評価については株式会社KRIに外注する。セミコークスの実用性評価については株式会社コベルコ科研に外注する。

図1-4に実施体制図を示す。
2. 山元情報 検討対象鉱区情報

2.1 支援対象石炭鉱山と炭種

① PT Bukit Asam Tbk.（以下、PTBA）の褐炭
C炭：南スマトラ Tanjung Enim地区

② PT BARAMULTI SUKSESSRANA Tbk.（以下、BSSR）の褐炭
A炭：南カリマンタン Banjarmasin 近郊
B炭：東カリマンタン Samarinda 近郊

（1）実施場所
C炭鉱山は南スマトラ Palembang から西南 200km の Tanjung Enim 地区に位置する開発計画中の未稼働鉱山である。

A炭鉱山は南カリマンタン州都 Banjarmasin から約 100km 北西の Tatakan 地区に位置し、1999 年から稼働中である。

B炭鉱山は東カリマンタン州都 Samarinda から南西約 25km の Loa Janan 地区に位置し、2011 年度から稼働中である。

これらの石炭鉱山から入手した石炭を用いて改質を行い、必要な試験研究及び商品設計等を実施した。
2.2 海外パートナー会社情報 I (PTBA)

（1）権利・権益の関係

PTBA の有する保有鉱山に関する鉱業権等の種類、取得時期、開発状況等を表 2-1 に示す。

表 2-1 PTBA の保有鉱山

<table>
<thead>
<tr>
<th>石炭鉱区</th>
<th>地域</th>
<th>鉱業権</th>
<th>取得時期</th>
<th>エリア ha</th>
<th>状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muara Tiga</td>
<td>Tanjung Enimu</td>
<td>IUP</td>
<td>2010.4</td>
<td>3,300</td>
<td>操業</td>
</tr>
<tr>
<td>Air Laya</td>
<td>"</td>
<td>"</td>
<td>2010.10</td>
<td>7,621</td>
<td>"</td>
</tr>
<tr>
<td>West Banko</td>
<td>"</td>
<td>"</td>
<td>2010.4</td>
<td>4,500</td>
<td>"</td>
</tr>
<tr>
<td>C 炭鉱</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>4,500</td>
<td>開発計画中</td>
</tr>
<tr>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>2,423</td>
<td>開発計画中</td>
</tr>
<tr>
<td>Subam Jeriji</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>22,937</td>
<td>開発計画中</td>
</tr>
<tr>
<td>Ombilin</td>
<td>West Sumatra</td>
<td>"</td>
<td>"</td>
<td>2,950</td>
<td>操業</td>
</tr>
<tr>
<td>Peranap</td>
<td>Riau</td>
<td>"</td>
<td>"</td>
<td>18,230</td>
<td>開発計画中</td>
</tr>
<tr>
<td>IPC</td>
<td>East Kalimantan</td>
<td>"</td>
<td>"</td>
<td>3,238</td>
<td>操業</td>
</tr>
</tbody>
</table>

（2） PTBA の概要

表 2-2 に PTBA の概要を示す。

表 2-2 PTBA の概要

<table>
<thead>
<tr>
<th>企業の名称</th>
<th>PT Bukit Asam Tbk</th>
</tr>
</thead>
<tbody>
<tr>
<td>国籍</td>
<td>インドネシア</td>
</tr>
<tr>
<td>資本金</td>
<td>IDR 115,207 million (11.9 US$ million; 9,652 IDR=1US$ at 2018.3/30)</td>
</tr>
<tr>
<td>所有権</td>
<td>PT Indonesia Asahan Aluminium（Persero）65.0%、インドネシア国内投資家16.9%、海外投資家9.6%、自己株式8.5%</td>
</tr>
<tr>
<td>主な事業内容</td>
<td>石炭開発・販売事業、鉄道輸送、港湾、発電事業、ガス事業</td>
</tr>
<tr>
<td>業績</td>
<td>2018年度実績：石炭販売量2,470万t、総売上IDR21.17trillion (1,483US$ million)、純利益IDR5.02trillion (352US$ million)</td>
</tr>
</tbody>
</table>

1US$=14,274IDR とした

（3） 生産実績

表 2-3 に C 炭鉱の生産計画を示す。

表 2-3 C 炭鉱の生産計画

<table>
<thead>
<tr>
<th>年度 (FY)</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>*生産量（万t）</td>
<td>250</td>
<td>400</td>
<td>500</td>
</tr>
</tbody>
</table>

* 生産計画検討中につき確定ではない。
表 2-4 に PTBA 全石炭の生産実績を示す。

<table>
<thead>
<tr>
<th>年度 (FY)</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>生産量 (万 t)</td>
<td>1,960</td>
<td>2,420</td>
<td>2,640</td>
</tr>
</tbody>
</table>

（4）原炭又は精炭の我が国（本邦法人等）への供給実績

表 2-5 に PTBA 炭の日本への輸出実績を示す。

<table>
<thead>
<tr>
<th>年度 (FY)</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>輸出量 (万 t)</td>
<td>120</td>
<td>0</td>
<td>150</td>
</tr>
</tbody>
</table>
2.3 海外パートナー会社情報Ⅱ（BSSR）

（1）権利・権益の関係

BSSR の保有鉱山に関する鉱業権等の種類、取得時期、開発状況等を表 2-6 に示す。

表 2-6 BSSR 社の保有鉱山

<table>
<thead>
<tr>
<th>鉱山名</th>
<th>地域</th>
<th>鉱業権</th>
<th>取得時期</th>
<th>エリア ha</th>
<th>操業</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 炭鉱山</td>
<td>南カリマンタン Tatakran</td>
<td>PKP2B</td>
<td>1994.8</td>
<td>22,433</td>
<td>1999~</td>
</tr>
<tr>
<td>B 炭鉱山</td>
<td>東カリマンタン Loa Janan</td>
<td>IUP</td>
<td>2010.4</td>
<td>2,459</td>
<td>2011~</td>
</tr>
</tbody>
</table>

（2）BSSR の概要

表 2-7 に BSSR の概要を示す。

表 2-7 BSSR の概要

<table>
<thead>
<tr>
<th>企業の名称</th>
<th>PT Baramulti Suksessarana Tbk</th>
</tr>
</thead>
<tbody>
<tr>
<td>国籍</td>
<td>インドネシア</td>
</tr>
<tr>
<td>資本金</td>
<td>76,899,902 US$ （2016 年 12 月 31 日）</td>
</tr>
<tr>
<td>所有権</td>
<td>PT Wahana Sentosa Cemerlang</td>
</tr>
<tr>
<td></td>
<td>Tata Power International Pte. Limited.</td>
</tr>
<tr>
<td></td>
<td>GS Energy Corporation</td>
</tr>
<tr>
<td></td>
<td>PT GS Global Resources</td>
</tr>
<tr>
<td></td>
<td>その他一般投資家（含む出光興産㈱3%）</td>
</tr>
<tr>
<td>主な事業内容</td>
<td>石炭生産・販売</td>
</tr>
<tr>
<td>業績</td>
<td>2018 年度実績：石炭生産量 1,082 万 t、石炭販売量 1,059 万 t</td>
</tr>
<tr>
<td></td>
<td>売上高 443.4 US$ million、営業利益 93US$ million</td>
</tr>
</tbody>
</table>

（3）生産実績

表 2-8 に A 炭の生産実績を、表 2-9 に B 炭の生産実績を示す。

表 2-8 A 炭の生産実績

<table>
<thead>
<tr>
<th>年度（FY）</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>生産量（万 t）</td>
<td>649</td>
<td>752</td>
<td>920</td>
</tr>
</tbody>
</table>

表 2-9 B 炭の生産実績

<table>
<thead>
<tr>
<th>年度（FY）</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>生産量（万 t）</td>
<td>146</td>
<td>149</td>
<td>162</td>
</tr>
</tbody>
</table>
（4）原炭又は精炭の我が国（本邦法人等）への供給実績

表2-10にA炭の日本への輸出実績を示す。なお、B炭の日本への輸出実績はない。

<table>
<thead>
<tr>
<th>年度（FY）</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>輸出量（万t）</td>
<td>0.6</td>
<td>1.6</td>
<td>1.7</td>
</tr>
</tbody>
</table>

*A炭はトライアル用途で輸出。
3. 検討対象とする褐炭改質プロセスの概要

3.1 Cat-HTR プロセス

図 3-1 に豪州 IER（現 Licella 社）が開発したコプロダクション型（ガス体、液体、固体を製造）プロセスである Cat-HTR プロセスの概要を示す。このプロセスは現在開発中の亜臨界熱水触媒反応技術であり、マイルドな液化に近い先進的な技術である。Cat-HTR はコプロダクション型プロセスの中で、液体プロダクトの収率が高いことが特長である。

本技術はガス化や液化に比べ小規模投資で実施可能で、褐炭から約 6 割の改質炭と約 3 割の合成油が製造出来るため、優れた経済性が期待できる。この技術をベースにインドネシア褐炭への適用技術を開発する。

本スタディにおいては、このプロセスから生成される固体プロダクトを「改質炭」、液体プロダクトを「合成油」、これらを蒸留分離前の油分を含んだ改質炭を「オイリーコール」と呼ぶ。

IER 社（現 Licella 社）は豪州政府の補助金（ALDP: Australian Lignite Demonstration Program）を得て、2018 年に褐炭改質の実証プラント（5 万 t/年）を豪州ビクトリア州のヤルーン地区に建設予定であったが、環境アセスメントの長期化によりプラント建設に着手できず、実証運転を断念した。

一方、Cat-HTR プロセスはバイオマスや廃プラスチックの液化にも適用可能であり、現在進行しているバイオマスプロジェクト（カナダ）や廃プラスチックプロジェクト（英国、ニュージーランド、東チモール、豪州）の状況を図 3-2 に示す。

① バイオマスプロジェクト

カナダのバルプ大手 Canfo 社と共同で開発中であり、パルプ工場の黒液、廃パイオマスを利用したバイオマス燃料として発電に使う。褐炭に比べ合成油収率は高く、約 6 割強に達する。カナダのブリティッシュコロンビア州のプリンスジョージにて 5 万 t/年-原料規模の実証プラントの FS が進行しており、2021 年には建設開始予定である。商業機では、30 万 t/年規模に拡張する計画となっている。
廃プラスチックプロジェクト

英国の化学会社 Armstrong 社と開発中の廃プラスチック液化プロジェクトは、パイロットプラントを改良して運転研究を行った。褐炭に比べ、液化物の収率は約 85%と高いのが特徴であり、英国で 2 万t/年-原料規模の実証プラントが建設段階に入っている。

また、その他にも、豪州の補助金により豪州国内でも、2 万 t/年の規模 5 つのプロジェクトが進行中となっている。また、2019 年になって、東チモールでは政府が推進するプロジェクトが立ち上がり、ニュージーランドでは王子製紙の子会社である OJI Fibers がプロジェクトを表明し、廃プラスチックでは現在 4 つのプロジェクトが進行中である。
3.2 Cat-HTR パイロットプラント

（1）試験装置
IER は豪州シドニーの北 80km の Somersby 工業団地地区に、SPP（Small Pilot Plant : 0.8t/日-乾燥炭）及び LPP（Large Pilot Plant ; 8t/日-乾燥炭）の 2 基のベンチプラントを有している。

少量サンプルや条件探索基礎試験には SPP を用いる。LPP 試験では、SPP 試験の結果を反映して、適切な反応条件で多量のサンプルを製造（改質炭 200kg 以上、合成油 20L 以上）するとともに、運転性、熱収支、物質収支等のプラントパフォーマンスの把握を行う。SPP 及び LPP のプロセスの概略フローを図 3-3 及び図 3-4 に示す。

SPP 反応塔には内径 2 インチのリアクタが 4 列挿入されており、LPP 反応塔は内径 12 インチのリアクタが 3 基直列に繋がっている。反応塔の高さはいずれも約 10m 程度である。
図 3-4 LPP プロセスの概略フロー図
3.3 郑州中能 Coal Plus の概要
(1) プロセスの特徴
Coal Plus は基本的には間接加熱（外熱式）方式の塩型移動層式熱分解乾留炉である。
褐炭 1t（乾燥炭）からタール油 60kg（〜6%）、セミコークス 600kg（〜60%）および燃料ガス 320Nm³（〜20%）を製作し、水が 10%程度生成される。

ガス収率高 24% ガスの4割はプロセス加熱
6~8%
60%

図 3-5 Coal Plus の概念図

ガス組成は水素約 45%、メタン約 18%であり、COG（Coal Oven Gas）の組成に近い。発熱量は中カロリー（4,000kcal/Nm³）相当であり、また得られた水素はタール油の水素化に活用できる。Cat-HTR に比べ、タール油（液体）が少なく燃料ガス（ガス体）の割合が多い。
図 3-6 に Coal Plus プロセスを用いた製品製造の概要を、図 3-7 に同プロセスの中核である熱分解炉の模式図を示す。

図 3-6 にCoal Plus プロセスを用いた製品製造の概要を、図 3-7 に同プロセスの中核である熱分解炉の模式図を示す。

乾留炉そのものは、コークス炉とほぼ同じ構造であるが、コークス炉がバッチ式で横からブッシャーで製品コークスを押し出すのに対し、Coal Plus は連続式で炉頂から石炭を供給し、自然落下させる移動層方式で、8〜12 時間かけて乾留を進行させ、炉底から連続抜き出しできるのが特徴である。また、直接バーナ部で熱回収できるリジェネバーナを用いて排出ガス損失を低下させることにより、従来と比べ高熱効率（85%以上）を得ることができ、2009 年に中国で実用新案を取得した。
熱分解温度は炭種によって異なるが、概ね 600〜750℃の範囲で調整する。
燃料ガスはプロセス加熱用に約 35%を自家消費するが、残りは外販できる（図 3-6）。
図 3-6 Coal Plus プロセスを用いた製品製造の概要

熱分解条件
断空気雰囲気下
常圧、600~750℃

図 3-7 Coal Plus 熱分解炉模式図
（2）Coal Plus の開発計画

熱分解型乾留炉には燃焼排ガスで直接石炭を加熱する内熱式と乾留室と燃焼ガス煙道を耐火壁で分割し、壁からの輻射で加熱する外熱式があり、Coal Plus は外熱式で、熱回収効率を高めたシステムである。コプロダクション型の堅型乾留炉は、中国ですでに相当数稼働しており、中国全土の石炭乾留能力は1億t/年に達しているが、そのほとんどが内熱式である。

Coal Plus の開発は、陝西省府谷の京府煤化で3万t/年の実証プラントを2009年から3年間、豪州褐炭を輸入して行われたが、現在は稼働していない。鄭州中能は京府煤化に内熱式堅型炉の納入実績（60万t/年×2）がある。

瀝青炭使用のCoal Plusは河南省で60万t/年の商業設備が完成しているが、未稼働である。

低品位炭、褐炭対象では新疆や内蒙古のプロジェクトでCoal Plusのプラントの建設が始まっているとの情報があるが、完成の時期が不明である。最近では陽泉集団がこの技術に注目している。ライセンサーの鄭州中能は、前身は河南省の設計院であるため、企業の要請を受けて自らがプロセスの設計を担当している。

このプロセスは2015年頃の商業運転を目指しFSが行われていたが、環境アセスメントの強化や環境に配慮した循環型プロセスしか認可しないとする中国政府の政策が打ち出されたため、Coal Plusも含めた褐炭改質プロセスの商用化は進んでいない模様である。当時の商業化計画を表3-1に纏めた。

<table>
<thead>
<tr>
<th>方式</th>
<th>目的</th>
<th>規模</th>
<th>石炭</th>
<th>場所</th>
<th>企業</th>
<th>産物</th>
<th>状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証機</td>
<td>外熱式</td>
<td>3万t/年</td>
<td>豪州褐炭</td>
<td>陝西省府谷</td>
<td>京府煤化</td>
<td>セミコークス2万t、油2千t、ガス15×10^6Nm³</td>
<td>2009開始現在停止中</td>
</tr>
<tr>
<td>燃留炉</td>
<td>外熱式</td>
<td>60万t/年</td>
<td>瀝青炭</td>
<td>河南省平頂山</td>
<td>河南中鴻</td>
<td>セミコークス40万t、ガス1×10^8Nm³、油</td>
<td>2013.10完成2015.3未稼働</td>
</tr>
<tr>
<td>燃留設備</td>
<td>外熱式</td>
<td>160万t/年</td>
<td>低品位炭</td>
<td>新疆托克遜県</td>
<td>遠成磁業</td>
<td>ガス3.2×10^8Nm³、油、セミコークス100万t</td>
<td>2015.4設計建設延期</td>
</tr>
<tr>
<td>燃留設備</td>
<td>燃留設備</td>
<td>500万t/年</td>
<td>低品位炭</td>
<td>内蒙古集団</td>
<td>新疆集団</td>
<td>改質炭250万t、油21万t、LNG6.8×10^7Nm³</td>
<td>500万t50億元建設延期</td>
</tr>
<tr>
<td>燃留設備</td>
<td>燃留設備</td>
<td>300万t/年</td>
<td>亜瀝青炭</td>
<td>山西省</td>
<td>陽泉集団</td>
<td>セミコークス、粗ベンゼン</td>
<td>2015年FS終了プロジェクト延期</td>
</tr>
<tr>
<td>燃留設備</td>
<td>燃留設備</td>
<td>800万t/年</td>
<td>亜瀝青炭</td>
<td>山西省</td>
<td>陽泉集団</td>
<td>セミコークス、粗ベンゼン</td>
<td>2015年FS終了プロジェクト延期</td>
</tr>
</tbody>
</table>
4. 原炭及びプロダクトの基礎特性

4.1 原炭及、改質炭およびセミコーチスの一般性状

表 4-1 改質炭Ａおよびセミコーチスの一般性状

<table>
<thead>
<tr>
<th>項目</th>
<th>A炭</th>
<th>改質炭Ａ</th>
<th>セミコーチスＡ（VM20％）</th>
<th>セミコーチスＡ*（VM2％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>全水分</td>
<td>wt%（AR）</td>
<td>33.4</td>
<td>3.5</td>
<td>2.9</td>
</tr>
<tr>
<td>発熱量</td>
<td>kcal/kg（GAD）</td>
<td>5,780</td>
<td>6,970</td>
<td>6,900</td>
</tr>
<tr>
<td>HGI</td>
<td>-</td>
<td>53</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>工業分析</td>
<td>wt%（AD）</td>
<td>6.2</td>
<td>3.9</td>
<td>2.6</td>
</tr>
<tr>
<td>固有水分</td>
<td>7.5</td>
<td>6.4</td>
<td>7.8</td>
<td>7.4</td>
</tr>
<tr>
<td>灰分</td>
<td>43.5</td>
<td>19.4</td>
<td>18.4</td>
<td>2.4</td>
</tr>
<tr>
<td>固定炭素</td>
<td>42.8</td>
<td>70.3</td>
<td>71.2</td>
<td>88.9</td>
</tr>
<tr>
<td>燃料比</td>
<td>-</td>
<td>0.98</td>
<td>3.62</td>
<td>3.87</td>
</tr>
<tr>
<td>全硫黄</td>
<td>wt%（DB）</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>炭素</td>
<td>wt%（DAF）</td>
<td>70.41</td>
<td>85.63</td>
<td>85.13</td>
</tr>
<tr>
<td>水素</td>
<td>5.10</td>
<td>2.83</td>
<td>2.99</td>
<td>0.00</td>
</tr>
<tr>
<td>窒素</td>
<td>1.27</td>
<td>1.60</td>
<td>1.57</td>
<td>0.61</td>
</tr>
<tr>
<td>硫黄</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>酸素</td>
<td>23.22</td>
<td>9.94</td>
<td>10.31</td>
<td>0.55</td>
</tr>
<tr>
<td>軟化点</td>
<td>℃, 酸化</td>
<td>1,360</td>
<td>1,230</td>
<td>1,175</td>
</tr>
<tr>
<td>融点</td>
<td>1,400</td>
<td>1,240</td>
<td>1,190</td>
<td>1,290</td>
</tr>
<tr>
<td>溶流点</td>
<td>1,435</td>
<td>1,355</td>
<td>1,350</td>
<td>1,465</td>
</tr>
<tr>
<td>SiO₂</td>
<td>wt%</td>
<td>44.03</td>
<td>32.65</td>
<td>43.05</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>27.49</td>
<td>12.14</td>
<td>9.61</td>
<td>11.10</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.13</td>
<td>0.72</td>
<td>0.64</td>
<td>0.51</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>11.63</td>
<td>26.96</td>
<td>22.60</td>
<td>31.45</td>
</tr>
<tr>
<td>CaO</td>
<td>7.37</td>
<td>16.71</td>
<td>16.36</td>
<td>19.20</td>
</tr>
<tr>
<td>MgO</td>
<td>1.89</td>
<td>4.06</td>
<td>3.21</td>
<td>4.04</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.15</td>
<td>0.09</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.46</td>
<td>0.64</td>
<td>0.83</td>
<td>0.46</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.06</td>
<td>0.03</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>MnO</td>
<td>0.19</td>
<td>0.40</td>
<td>0.30</td>
<td>0.57</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>0.33</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>SO₂</td>
<td>3.76</td>
<td>3.97</td>
<td>3.05</td>
<td>6.98</td>
</tr>
<tr>
<td>炭酸素</td>
<td>PPM</td>
<td>29</td>
<td>15</td>
<td>39</td>
</tr>
<tr>
<td>オシ素</td>
<td>PPM</td>
<td>39</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

*低揮発分のこのロットのみ別途試験用コークス炉で製造

AR；到着ベース，AD；気乾ベース，DB；無水ベース，DAF；無水無灰ベース
GAR；総発熱量（到着ベース）, GAD；総発熱量（気乾ベース）
A炭から製造された改質炭を改質炭A、セミコークスをセミコークスAとし、B炭から
製造された改質炭を改質炭B、セミコークスをセミコークスBとする。

原炭に比べ、改質炭AやセミコークスA（VM20%）は全水分が大幅に低下、揮発分は
20%程度に低下し、発熱量（GAR）は4,000kcal/kgから6,900〜7,000kcal/kgに増加した。
これらの改質により、揮発分および発熱量はPCI品質にまで高められている。

セミコークスA（VM2%）は同様に水分が低下、揮発分はさらに2%程度まで低下し、発
熱量は（GAR）7,300kcal/kgに達した。また炭素割合が96%以上で水素は消失しており、炭
素材料として窒素、酸素、硫黄のいわゆるヘテロ元素は、いずれも1%を下回り、無煙炭に
近い品質となった。

セミコークスB（VM20%）についても、同様に原炭に比べ大幅な水分、揮発分の低下と
発熱量の増加がみられ、そのそれぞれの値はセミコークスA（20%）と非常に近い値を示
した。

しかし、灰の溶流点については、セミコークスAが1,350℃に対し、セミコークスBは
1,500℃以上であるため、有意な違いがみられた。
表 4-2 改質炭 B およびセミコークスの一般性状

<table>
<thead>
<tr>
<th>項目</th>
<th>B炭</th>
<th>改質炭B</th>
<th>セミコークスB (VM20%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>全水分</td>
<td>wt% (AR)</td>
<td>41.8</td>
<td>1.8</td>
</tr>
<tr>
<td>発熱量</td>
<td>kcal/kg (GAD)</td>
<td>5,570</td>
<td>7,090</td>
</tr>
<tr>
<td></td>
<td>kcal/kg (GAR)</td>
<td>3,543</td>
<td>7,193</td>
</tr>
<tr>
<td>HGI</td>
<td>-</td>
<td>47</td>
<td>-</td>
</tr>
<tr>
<td>焼結</td>
<td>wt% (AD)</td>
<td>8.5</td>
<td>3.2</td>
</tr>
<tr>
<td>固有水分</td>
<td>5.2</td>
<td>5.9</td>
<td>6.1</td>
</tr>
<tr>
<td>灰分</td>
<td>42.9</td>
<td>20.3</td>
<td>20.9</td>
</tr>
<tr>
<td>振発分</td>
<td>43.4</td>
<td>70.6</td>
<td>69.5</td>
</tr>
<tr>
<td>炭素</td>
<td>68.26</td>
<td>84.96</td>
<td>84.25</td>
</tr>
<tr>
<td>元素分析</td>
<td>4.69</td>
<td>2.99</td>
<td>3.02</td>
</tr>
<tr>
<td>水素</td>
<td>1.59</td>
<td>2.20</td>
<td>2.20</td>
</tr>
<tr>
<td>気化</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>硫化</td>
<td>25.46</td>
<td>9.85</td>
<td>10.53</td>
</tr>
<tr>
<td>酸素</td>
<td>1,220</td>
<td>1,435</td>
<td>1,370</td>
</tr>
<tr>
<td>溶化点</td>
<td>1,235</td>
<td>>1,500</td>
<td>1,440</td>
</tr>
<tr>
<td>融点</td>
<td>1,410</td>
<td>>1,500</td>
<td>>1,500</td>
</tr>
<tr>
<td>SiO₂</td>
<td>24.30</td>
<td>12.11</td>
<td>15.94</td>
</tr>
<tr>
<td>灰组成</td>
<td>0.22</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>29.84</td>
<td>39.68</td>
<td>36.30</td>
</tr>
<tr>
<td>TiO₂</td>
<td>12.71</td>
<td>15.77</td>
<td>19.81</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>9.64</td>
<td>14.67</td>
<td>14.48</td>
</tr>
<tr>
<td>CaO</td>
<td>0.18</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>MgO</td>
<td>0.61</td>
<td>0.32</td>
<td>0.50</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.65</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>2.16</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>MnO</td>
<td>10.56</td>
<td>8.38</td>
<td>8.11</td>
</tr>
<tr>
<td>SO₃</td>
<td>39</td>
<td>22</td>
<td>49</td>
</tr>
<tr>
<td>流合素</td>
<td>26</td>
<td>15</td>
<td>46</td>
</tr>
</tbody>
</table>

改質炭 B およびセミコークス B（VM20%）も全水分が大幅に低下、揮発分は18~20%程度となり、発熱量（GAR）は原炭の約3,500kcal/kgから7,000~7,200kcal/kgと増加しPCI品質となっている。
4.2 合成油の一般性状

表4-3に原油及合成油の元素分析値、表4-4に船舶油スペックと合成油性状を示す。

Cat-HTRプロセスでA炭から製造された合成油を合成油A、Coal PlusプロセスでA炭から製造されたタール油をタール油Aとする。

表4-3 合成油及びタール油の元素分析値

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>原油*</th>
<th>合成油A</th>
<th>タール油A</th>
</tr>
</thead>
<tbody>
<tr>
<td>酸素（O）</td>
<td>wt%</td>
<td><0.1</td>
<td>8.7</td>
<td>4.9</td>
</tr>
<tr>
<td>窒素（N）</td>
<td>ppm</td>
<td>800</td>
<td>5,500</td>
<td>6,000</td>
</tr>
<tr>
<td>硫黄（S）</td>
<td>ppm</td>
<td>17,000</td>
<td>810</td>
<td>2,800</td>
</tr>
<tr>
<td>塩素（Cl）</td>
<td>ppm</td>
<td>6</td>
<td>110</td>
<td>52</td>
</tr>
<tr>
<td>無機塩素</td>
<td>ppm</td>
<td>6</td>
<td>1<1</td>
<td>3</td>
</tr>
<tr>
<td>炭素（C）</td>
<td>wt%</td>
<td>85</td>
<td>82.2</td>
<td>83.3</td>
</tr>
<tr>
<td>水素（H）</td>
<td>wt%</td>
<td>12</td>
<td>9.1</td>
<td>9.8</td>
</tr>
<tr>
<td>H/C比</td>
<td>mol/mol</td>
<td>1.69</td>
<td>1.32</td>
<td>1.40</td>
</tr>
<tr>
<td>O/C比</td>
<td>mol/mol</td>
<td>0.0008</td>
<td>0.079</td>
<td>0.078</td>
</tr>
</tbody>
</table>

*出典: 原油データ 石油連盟広報部、1990及びJXTG石油便覧他

表4-3に示すように、合成油およびタール油は共に、原油に比べ酸素含有量が非常に高い、水素含有量は少ない、有機塩素が多いという特徴がある。
表 4-4 合成油およびタールの燃料油性状

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>IFO RMG380 船舶油</th>
<th>合成油 A</th>
<th>タール油 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>密度</td>
<td>kg/m³</td>
<td>991 以下</td>
<td>1,035</td>
<td>978.3</td>
</tr>
<tr>
<td>動粘度@50℃</td>
<td>mm²/s</td>
<td>380 以下</td>
<td>測定不可</td>
<td>10.6</td>
</tr>
<tr>
<td>動粘度@75℃</td>
<td>mm²/s</td>
<td>－（参考値）</td>
<td>30.1</td>
<td></td>
</tr>
<tr>
<td>動粘度@100℃</td>
<td>mm²/s</td>
<td>－（参考値）</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>硫黄</td>
<td>wt%</td>
<td>規制に依る</td>
<td>0.081</td>
<td>0.28</td>
</tr>
<tr>
<td>引火点</td>
<td>℃</td>
<td>60 以上</td>
<td>118</td>
<td>54.5</td>
</tr>
<tr>
<td>酸価</td>
<td>mg KOH/g</td>
<td>2.5 以下</td>
<td>26.8</td>
<td>8.26</td>
</tr>
<tr>
<td>潜在セジメント</td>
<td>wt%</td>
<td>0.1 以下</td>
<td>1.64</td>
<td>0.43</td>
</tr>
<tr>
<td>残炭</td>
<td>wt%</td>
<td>18 以下</td>
<td>8.38</td>
<td>4.63</td>
</tr>
<tr>
<td>流動点</td>
<td>℃</td>
<td>30 以下</td>
<td>35</td>
<td>27.5</td>
</tr>
<tr>
<td>水分</td>
<td>vol.%</td>
<td>0.5 以下</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>灰分</td>
<td>wt%</td>
<td>0.1 以下</td>
<td>0.089</td>
<td>0.228</td>
</tr>
<tr>
<td>V</td>
<td>ppm</td>
<td>350 以下</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Na</td>
<td>ppm</td>
<td>100 以下</td>
<td>41</td>
<td>280</td>
</tr>
<tr>
<td>Al+Si</td>
<td>ppm</td>
<td>60 以下</td>
<td>138</td>
<td>95</td>
</tr>
</tbody>
</table>

また、表 4-4 に示すように、合成油およびタール油は、船舶油のスペックに適合せず、そのままでは商品価値が低い。また、原油に比べ酸化や有機塩素含有量が高いことによる、プロセス腐食等の懸念のため、原油にブレンドするには制約がある。従って、付加価値を上げるには水素化改質して自動車燃料に転換する方法や、本件のように炭素材料に転換する方法が有効と考えられる。その高付加価値手法の概念を図 4-1 に示す。
図 4-1 合成油の付加価値向上手法
4.3 セミコーキス等の実用基礎特性

微粉炭燃焼で実使用石炭と相対比較することにより、セミコーキス等の自然発熱性および燃焼基礎特性を評価した。比較炭としては、燃焼性に優れるが自然発熱し易いとされるインドネシア亜瀝青炭（AD）と燃焼性ならびに自然発熱性とも基準炭として問題の無いレベルの豪州瀝青炭（NL）を選定した。

(1) 自然発熱性

自然発熱性試験は㈱島津製作所 SIT-2 装置（Spontaneous Ignition Tester-2）を用いた。外観および構造と測定手順を図 4-2 に示す。本法では、110℃から 180℃に至るまでの時間が短いほど自然発熱がしやすい石炭と評価される。

試験結果を図 4-3 に示す。インドネシア褐炭の A 炭、B 炭はインドネシア亜瀝青炭よりも短時間で 180℃に達し、D および E ランクに分類され自然発熱には注意を要する。
一方、A 炭および B 炭の改質炭ならびにセミコーキスは豪州瀝青炭より長時間で 180℃に達し、自然発熱し難い A ランクに分類される。

これは、改質や乾留により、反応性に富む酸素官能基が揮発分として脱離したことによるものと推測される。
図 4-3 SIT による自然発熱性評価
（2）燃焼基礎特性評価
① 着火性、燃え切り性評価（バーニングプロファイル）

図4-4に使用した熱重量分析計（Thermo-gravimetric Analysis、以下TGA）を示す。TGAは少量試料を電気ヒーターで加熱し、重量減少変化のパターン（バーニングプロファイル）を測定し、石炭の燃焼基礎特性（着火温度、燃え切り温度）の定性評価が簡便にできる。

図4-4 熱重量分析計（TGA）

石炭、改質炭およびセミコークス等のバーニングプロファイルを図4-5に、バーニングプロファイルから解析した燃え切り温度等を表4-5に示す。A炭、改質炭A、改質炭B、セミコークスA（VM20%）およびセミコークスB（VM20%）はいずれも揮発分放出温度、ピーク燃焼温度ならびに燃え切り温度は、微粉炭燃焼で燃焼性に優れるインドネシア亜瀝青炭に比べ、同等以上であり、これらは良好な燃焼性を示す。

一方、揮発分を2%まで減少させたセミコークスA（VM2%）は、微粉炭燃焼で一般に使
用されている豪州瀝青炭に比べ揮発分放出温度、ピーク燃焼温度ならびに燃え切り温度も高
く、微粉炭燃焼用炭としては燃焼性が劣る。

よって、バーニングプロファイルからの燃焼性の序列は、B炭>A炭>改質炭B>改質炭A>セミコークスB（VM20%）>セミコークスA（VM20%）>インドネシア亜瀝青炭>豪州瀝青炭>セミコークスA（VM2%）となる。
図 4-5 石炭、改質炭およびセミコークスのバーニングプロファイル

表 4-5 バーニングプロファイルからの解析

<table>
<thead>
<tr>
<th></th>
<th>揮発分放出温度</th>
<th>ピーク温度</th>
<th>燃え切り温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 炭</td>
<td>240</td>
<td>270</td>
<td>500</td>
</tr>
<tr>
<td>A 炭</td>
<td>260</td>
<td>340</td>
<td>540</td>
</tr>
<tr>
<td>改質炭 B</td>
<td>280</td>
<td>340</td>
<td>540</td>
</tr>
<tr>
<td>改質炭 A</td>
<td>280</td>
<td>340</td>
<td>540</td>
</tr>
<tr>
<td>セミコークス B（VM20%）</td>
<td>260</td>
<td>380</td>
<td>550</td>
</tr>
<tr>
<td>セミコークス A（VM20%）</td>
<td>280</td>
<td>380</td>
<td>550</td>
</tr>
<tr>
<td>インドネシア亜瀝青炭</td>
<td>280</td>
<td>430</td>
<td>550</td>
</tr>
<tr>
<td>豪州瀝青炭</td>
<td>370</td>
<td>520</td>
<td>660</td>
</tr>
<tr>
<td>セミコークス A（VM2%）</td>
<td>400</td>
<td>560</td>
<td>680</td>
</tr>
</tbody>
</table>
② 小型管状炉（DTF）による燃え切り性評価

図 4-6 に示す小型管状炉（Drop Tube Furnas 以下 DTF）を示す。DTF は微粉炭燃焼場での燃焼速度基礎特性を把握するため、出来る限り粒子間の相互作用を排除すべく少量の供給量（5g/hr）を実現させ、理想的な温度、空気雰囲気の下に、試料固有の燃焼速度パラメータ（活性化エネルギー、頻度因子）を算定する装置である。

DTF は電気加熱式であり、最高1,500℃までの温度調節を上下2分割で行うことが可能である。炉体の高さは1,300mmであるが、有効長（シリコン管加熱部の長さ）は1,150mmである。電気炉の中には、内径42mmのSiC製炉心管が鉛直に設置されており、炉心管をある一定温度に保った状態で石炭を燃焼する。湿式分級で粒径を調整した石炭は、最大5g/hrで、常温、1.5NL/minの搬送空気と伴に、内径10mmの水冷バーナを通して、炉心管内に投入される。

一方、700℃に予熱した燃焼空気は、10.5NL/minで、ハニカムで整流した後に炉心管と水冷バーナの間を通して炉内に導入される。燃焼途中の石炭粒子は、炉下部から挿入された内径10mmの可動式水冷サンプリングプローブで吸引捕集される。

石炭粒子の反応時間は、サンプリングプローブを上下させバーナとの距離を変えることで調節した。本実験では、揮発分の放出後のP5からP9の5ポイントで粒子をサンプリングした。
グし、主にチャー燃焼領域（比較的燃焼後期）の未燃炭素率変化を計測した。それぞれの位置で捕集された未燃チャーは工業分析および元素分析を行い、未燃炭素率はアッシュバランス法を用いて計算で求めた。本実験では、基本的にはこのポイントのサンプリングを 1 セットの測定として、温度条件（900〜1,400℃の内 3〜4 条件を選定）、酸素濃度条件 7% および初期粒径条件 62 μm（湿式篩調製粒度 200#〜300#）の未燃炭素率変化を詳細に測定した。

・燃焼プロファイル

試料はセミコークス A（VM20%）、セミコークス B（VM20%）およびセミコークス A（VM2%）を用い、それぞれの燃焼プロファイル（滞留時間に対する未燃率）を図 4-7、図 4-8 および図 4-9 に示す。

セミコークス A（VM20%）およびセミコークス B（VM20%）は 900℃の温度条件でも、炉尻の未燃率は 2〜3%以下、1,100℃の温度条件では未燃率 0.3〜0.5%程度となり燃え切り性は良好であった。

一方、セミコークス A（VM2%）は、900℃および1,000℃で未燃分が高く試験をスキップしたが、1,100℃では1%程度、1,300℃以上では0.5%程度となり、前 2 者に比較し、極めて燃え切り性は劣る。燃え切りの序列はセミコークス B（VM20%）＞セミコークス A（VM20%）＞セミコークス A（VM2%）となり、バーニングプロファイルの序列と同様である。

図 4-7 セミコークス A（VM20%）の燃焼プロファイル
図 4-8 セミコークス B (VM20%) の燃焼プロファイル

図 4-9 セミコークス A (VM2%) の燃焼プロファイル
・燃焼速度パラメータの算出

チャーの燃焼速度を定量化するために、各温度における未燃率の傾きと温度から、アレニウス型のプロットを行い、燃焼速度定数を算出することで、パラメータ（活性化エネルギー；傾き、頻度因子；縦軸切片）が比較可能である。両パラメータは、厳密には試料毎に異なる固有値であるが、本法では活性化エネルギーを一定（瀝青炭の平均値 = 57,100J/mol）として、頻度因子の大小によって燃焼速度の比較を行うものとする。
チャーの燃焼速度定数を図 4-10 に示す。算定された燃焼速度定数（頻度因子）の序列は A 炭 ≈ B 炭 > 改質炭 A > セミコークス B (VM20%) ≈ セミコークス A (VM20%) > インドネシア亜瀝青炭 > セミコークス A (VM2%) > 澳州瀝青炭となった。この結果からも、低揮発分、高カロリーでありながら、燃焼速度がインドネシア亜瀝青炭に優るセミコークス A (VM20%) およびセミコークス B (VM20%) は PCI 代用として有望と思われる。

一方、燃焼速度が豪州瀝青炭を下回るセミコークス A (VM2%) は、微粉炭燃焼の様な短い滞留時間では未燃分が多くなるため、使用は難しいが、熾火燃焼の様に滞留時間が長い燃焼には適用可能である。セミコークス A (VM2%) は 7,300kcal/kg と高カロリーでありかつ窒素分も 1%を下回っているので、焼結用炭素材（コークスブリーズまたは無煙炭）代替としての活用が期待できる。

これら褐炭セミコークスの PCI や焼結用炭素材としての実用性評価は 5 章で詳述する。
5. 褐炭セミコーキスの高炉用 PCI への利用検討

5.1 スタディ検討の概要

前章では、揮発分の異なる熱分解セミコーキス等の基礎物性、基礎燃焼特性の結果より、揮発分 20%程度のセミコーキス A は高炉 PCI 用として、揮発分 2%程度のセミコーキス A は鉄鉱石焼結用の炭素材としてのポテンシャルがあることを示した。

本章では、鉄鋼メーカーのベンチスケールの評価装置を用いて、これら用途における実用性の評価を行った。

5.2 セミコーキスの高炉 PCI 用炭材としての実用性評価

(1) 目的

図 5-1 に、セミコーキスの PCI 用炭材として評価すべき技術課題を示す。高炉微粉炭吹き込みは、石炭を塊成化することなく直接に高炉で使用できることに経済的な利点があるが微粉炭は固体であるため高圧高温型高炉での微粉炭の①大量安定輸送、多数羽口への均等分配、②羽口レースウェイ内での燃焼性また、レースウェイで発生する未燃分（以下「未燃チャー」という）に関しては、③カーボンソリューション反応による未燃チャーの炉内消費、溶銅品質に関しては④微粉炭燃焼時の SiO（g）の発生にともなう溶銅中 Si の上昇、および未燃チャーは炉芯表層部分で多く堆積するため⑤灰分の滓化・同化、および、滴下性、が検討課題となっている。

以上の 5つの課題に関して改質炭の比較検討することによって、改質炭の高炉 PCI 用としての実用性評価を実施した。

図 5-1 高炉用 PCI 炭としての実用性評価項目(3)
5.3 セミコークスの性状

表 5-1 セミコークス等の性状

<table>
<thead>
<tr>
<th>試料</th>
<th>到着ベース</th>
<th>無水ベース</th>
<th>灰分</th>
<th>脱水ベース</th>
<th>固定炭素</th>
<th>総発熱量</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>CaO</th>
<th>C/S**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>水分</td>
<td>灰分</td>
<td>挥発分</td>
<td>固定炭素</td>
<td>総発熱量</td>
<td>SiO₂</td>
<td>Al₂O₃</td>
<td>Fe₂O₃</td>
<td>CaO</td>
<td>C/S**</td>
<td></td>
</tr>
<tr>
<td>セミコークスA</td>
<td>4.8</td>
<td>5.6</td>
<td>24.4</td>
<td>70.1</td>
<td>29,870</td>
<td>22.2</td>
<td>12.6</td>
<td>20.3</td>
<td>24.8</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>セミコークスB</td>
<td>5.4</td>
<td>7.6</td>
<td>27.6</td>
<td>64.8</td>
<td>28,140</td>
<td>26.1</td>
<td>9.6</td>
<td>24.6</td>
<td>12.5</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>標準炭B炭*</td>
<td>9.0</td>
<td>8.8</td>
<td>19.8</td>
<td>71.3</td>
<td>33,436</td>
<td>51.9</td>
<td>27.6</td>
<td>5.7</td>
<td>4.6</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

*実用PCI炭, **CaO/SiO₂塩基度の指標

5-1 に、セミコークス A、B および実用 PCI 炭である標準炭 B 炭の成分を示す。セミコークス A の灰分の塩基度 (CaO/SiO₂) は 1.12 と高く、塩基性であることに対して、セミコークス B の灰分の塩基度 (CaO/SiO₂) は 0.48 と低く、標準炭 B 炭の (CaO/SiO₂) は 0.09 であり、酸性であることが特徴である。

図 5-2 に粒度分布を示す。セミコークス A の粒度分布は、平均粒径: 41.4 µm （標準偏差: 29.5 µm）、セミコークス B の粒度分布は、平均粒径: 42.3 µm（標準偏差: 29.1 µm）であった。別途調整した実用 PCI 炭の平均粒径: 82.4 µm（標準偏差: 75.8 µm）であった。

両セミコークスは、過年度の微粉炭燃焼試験残を使用したが、熱分解後の顆粒状セミコークスをパルベライザーで微粉砕後、篩で 100 メッシュアンダーに調整したため、実用 PCI 炭に比べ平均粒径が小さく、粒度分布範囲が狭くなったと思われること。
5.4 セミコークスの搬送性の評価

図 5-3 搬送試験装置の概要

図 5-3 に、搬送性試験装置を示す。搬送性試験は、800g/min にてセミコークスをテーブルフィーダーによって切出し、搬送用の窒素ガスとともに長さ 2m、内径 12.7mm の水平管内を気体輸送する。実験では微粉炭の輸送にともなう管内圧力損失の変化および微粉炭の滞留量を測定し、輸送性を評価した。

図 5-4 に、セミコークス搬送にともなう圧力変化を示す。セミコークス A および B の圧力変動幅は標準炭 B 炭に比較し小さかった。

表 5-2 に、搬送試験後の試料回収量と搬送流量、表 5-3 に、搬送重量当たりの搬送負荷を示す。

搬送重量当たりの搬送負荷圧損量は、セミコークス A が 0.554 kPa/m/(kg/min) であり、セミコークス B の 0.535 kPa/m/(kg/min) よりも高かった。これは、前述のセミコークス A と B の形状差によるものと考えられる。ただし、この搬送重量当たりの搬送負荷圧損量は、実用 PCI 炭である標準炭 B 炭の 0.545kPa/m/(kg/min) と同レベルであり、セミコークス A およびセミコークス B の搬送性は、実用 PCI 炭とほぼ同等と判断できる。
図 5-4 搬送試験圧力損失測定結果
表 5-2 搬送性試験後の試料回収量と搬送流量

<table>
<thead>
<tr>
<th>試料名</th>
<th>ホッパー投入量</th>
<th>回収箇所</th>
<th>回収合計</th>
<th>切り出し量(g/min)</th>
<th>滞留率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>セミコークスA</td>
<td>6,000</td>
<td>A 120.7</td>
<td>B 13.0</td>
<td>C 17.5</td>
<td>5,104.3</td>
</tr>
<tr>
<td>セミコークスB</td>
<td>6,000</td>
<td>D 105.3</td>
<td>E 6.8</td>
<td>F 16.8</td>
<td>5,015.8</td>
</tr>
<tr>
<td>標準炭B炭</td>
<td>6,000</td>
<td>G 128.3</td>
<td>A 5.6</td>
<td>B 25.2</td>
<td>733.0</td>
</tr>
</tbody>
</table>

表 5-3 圧力損失と搬送重量当たりの搬送負荷圧損

<table>
<thead>
<tr>
<th>N2</th>
<th>P1</th>
<th>0.122</th>
<th>P2</th>
<th>0.995</th>
<th>P3</th>
<th>0.831</th>
<th>P1-P2</th>
<th>0.228</th>
<th>P2-P3</th>
<th>0.163</th>
<th>P1-P3</th>
<th>0.391</th>
</tr>
</thead>
<tbody>
<tr>
<td>セミコークスA</td>
<td>2.243</td>
<td>1.399</td>
<td>0.864</td>
<td>0.845</td>
<td>0.535</td>
<td>1.380</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>搬送負荷圧損</td>
<td>0.656</td>
<td>0.286</td>
<td>0.417</td>
<td>0.471</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>搬送重量当たりの搬送負荷圧損(kPa/m) / (kg/min)</td>
<td>0.554</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N2</th>
<th>P1</th>
<th>1.212</th>
<th>P2</th>
<th>0.794</th>
<th>P3</th>
<th>0.580</th>
<th>P1-P2</th>
<th>0.418</th>
<th>P2-P3</th>
<th>0.214</th>
<th>P1-P3</th>
<th>0.632</th>
</tr>
</thead>
<tbody>
<tr>
<td>標準炭B炭</td>
<td>2.048</td>
<td>1.133</td>
<td>0.617</td>
<td>0.915</td>
<td>0.516</td>
<td>1.431</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>搬送負荷圧損</td>
<td>0.497</td>
<td>0.302</td>
<td>0.400</td>
<td>0.400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>搬送重量当たりの搬送負荷圧損(kPa/m) / (kg/min)</td>
<td>0.545</td>
<td></td>
</tr>
</tbody>
</table>
5.5 羽口レースウェイ内での燃焼性の評価

図 5-5 に燃焼性を評価する多目的燃焼炉（MPR：Multi-Purpose Reactor）の概念図を示す。

燃焼試験は、空気 250NI/min （1,000℃）、CO：20NI/min においてセミコーカスを50g/min にて供給する。試験では燃焼状況、粒子温度、燃焼率、燃焼チャーの観察によって評価した。

図 5-6 に MPR 燃焼試験における燃焼状況を示す。セミコークス A およびセミコークス B の燃焼輝度は標準炭 B 炭よりも高く、燃焼状態は良好である。
<table>
<thead>
<tr>
<th>セミコークスA CO導入前</th>
<th>セミコークスA CO導入後</th>
<th>セミコークスA 燃焼中</th>
<th>セミコークスA 燃焼終了後</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>セミコークスB CO導入前</th>
<th>セミコークスB CO導入後</th>
<th>セミコークスB 燃焼中</th>
<th>セミコークスB 燃焼終了後</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>標準炭B炭 CO導入前</th>
<th>標準炭B炭 CO導入後</th>
<th>標準炭B炭 燃焼中</th>
<th>標準炭B炭 燃焼終了後</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 5-6 セミコークスの燃焼状況（覗き窓より撮影）
図 5-7 にセミコークス燃焼時の炉内・粒子温度を示す。セミコークス A 炭よりもセミコークス B 炭の炉内・粒子温度は、若干高いものの大きな差異は認められない。

ただし、セミコークス A およびセミコークス B の炉内・粒子温度は、実用 PCI 炭である標準炭 B 炭よりも高く、燃焼状態は良好である。

表 5-4 に、MPR 燃焼試験における燃焼効率の比較を示す。

セミコークス A の燃焼効率は 88%、セミコークス B の燃焼効率は 89.3%であり、実用 PCI 炭の標準炭 B 炭の燃焼効率の 83.9%を上回っており、炉内温度の傾向と一致している。

図 5-8 に、燃料チャーの断面写真を示す。セミコークス A およびセミコークス B とも揮発分放出後のチャーは、褐炭等の低品位炭に特有の燃え切り性が良いと思われる多孔質のカーボン壁の薄い網状チャーが主体であった。一方、原料炭等の高品位炭にみられる、燃え切り性に劣る厚壁のバルーン状チャーはほとんど確認できなかった。セミコーチスの燃え切り性が標準炭 B に比べ良好な理由として、平均粒径が小さく分布幅が狭いことに加え、生成したチャーの反応性に起因するものと思われる。

図 5-7 炉内・粒子温度分布
表 5-4 セミコークス等の燃焼効率

<table>
<thead>
<tr>
<th></th>
<th>試料</th>
<th>工業分析値（到着ベース）</th>
<th>全供給量</th>
<th>回収灰</th>
<th>回収量</th>
<th>燃焼効率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>可燃分</td>
<td>灰分</td>
<td>水分</td>
<td>重量</td>
<td>可燃分</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(gr)</td>
<td>(gr)</td>
</tr>
<tr>
<td>セミコークス A</td>
<td>89.9</td>
<td>5.3</td>
<td>4.8</td>
<td>1,000.0</td>
<td>899.0</td>
<td>52.9</td>
</tr>
<tr>
<td>セミコークス B</td>
<td>87.4</td>
<td>7.2</td>
<td>5.4</td>
<td>983.0</td>
<td>859.2</td>
<td>70.7</td>
</tr>
<tr>
<td>標準炭 B 炭</td>
<td>87.0</td>
<td>8.4</td>
<td>4.6</td>
<td>1,250.0</td>
<td>1,087.1</td>
<td>105.5</td>
</tr>
</tbody>
</table>

図 5-8 燃焼チャーの形態

<table>
<thead>
<tr>
<th></th>
<th>網目状</th>
<th>バルーン状</th>
</tr>
</thead>
<tbody>
<tr>
<td>セミコークス A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>セミコークス B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>標準炭 B 炭</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.6 カーボンソリューションロス反応性の評価

CO₂反応性は、示差熱分析によって評価する。示差熱分析はCO₂雰囲気下にて室温から1,000℃まで標準10℃/minにて昇温し、重量減少から揮発分の放出温度およびソリューションロス反応によるガス化開始温度を評価した。

図 5-9 示差熱分析試験結果
図 5-9 に、示差熱分析結果を示す。セミコーチークス A (B) の重量減少は、471℃（483℃）において揮発分放出と考えられる屈曲点を経て、882℃（885℃）において35％（38％）重量減少を示したのち、重量減少の温度勾配が大きくなり、1,000℃において 76％（78％）の重量減少が認められた。

一方、実用 PCI 炭である標準炭 B 炭は、1,000℃においても 21.4％の重量減少に留まっている。したがって、セミコーチークス A (B) は、揮発分による重量減少後に、ソリューションロス反応による CO₂ガス化による顕著な重量減少が起こっている。

5.7 微粉炭燃焼時の SiO₂(g) の発生の評価

供試するセミコーチークスは、事前に温度 900℃、保持時間 30 分、室素雰囲気にてチャー化処理を実施する。

SiO₂ (g) 発生条件としては、1,500℃、1,600℃で保持時間 1、2、3 時間の 3 条件において CO ガス 2l/min 流通下にて実施した。試験後のチャーの成分から SiO₂の発生量 a SiO₂を CaO-SiO₂-Al₂O₃-MgO 系スラグでの実験値から推定し、微粉炭燃焼時の SiO₂ (g) の発生を評価した。なお、SiO₂の発生量 aSiO₂については、CaO-SiO₂-Al₂O₃-MgO 系スラグでの実験値からの下式から推定した。

\[
a_{SiO₂} = 4.364 \left(NSiO₂ \right)^{3} - 0.7552 \left(NSiO₂ \right)^{2} \left(NSiO₂ < 0.5 \right)
\]

\[
a_{SiO₂} = 1.235 \left(NSiO₂ \right) - 0.071 \left(NSiO₂ > 0.5 \right)
\]

図 5-10 に、ガス化反応時間にともなう灰中 SiO₂活性 (aSiO₂) の変化を示す。1,500℃においては、セミコーチークス A およびセミコーチークス B とも aSiO₂の変化は認められない。1,600℃においては、セミコーチークス A およびセミコーチークス B とも aSiO₂の変化は認められない。
基度（CaO/SiO₂）は1.12と高く、塩基性であることに対して、セミコークスBの灰分の塩基度（CaO/SiO₂）は0.48と低く、酸性であることに起因すると考えられる。

一方で、実用PCI炭の標準炭B炭は、1,600℃においてaSiO₂は大幅に低下（0.7→0.4）している。したがって、標準炭B炭に対してセミコークスAおよびセミコークスBの燃焼時のSiO(g)の発生にともなう溶融中のSiの上昇は少ないと判断される。

5.8 灰分の滓化・同化、および、滴下性の評価

灰の溶融性の評価は、溶融性試験装置にてJIS M 8801-12に準拠し、昇温速度5℃/min（RT～1,550℃）において、酸化性雰囲気（大気）、還元性雰囲気（CO/CO₂=60/40）の2条件にて実施した。その結果から灰の軟化点、溶融点および溶流点を評価した。

図5-11 灰の溶融特性測定結果

図5-11に、溶融性試験結果を示す。セミコークスAおよびセミコークスBとも軟化、溶融、溶流温度は、還元雰囲気よりも大気雰囲気のほうが高い。これは、一般的には、Fe₂O₃含有率の低い炭種は、酸化性と還元性で溶融温度に大きな差異はみられないが、Fe₂O₃の含有率が高い炭種の灰では、酸化性雰囲気に比べ、還元性雰囲気での溶融温度が低下する。これは、石炭中に鉱物として存在する鉄が、燃焼により最終的に酸化物であるFe₂O₃となるが、炉内では還元性雰囲気になることからFeOが形成され、これがSiO₂とAl₂O₃との低融点化合物を形成し、溶融温度が低下するためと考えられる。
一方で、軟化、溶融、溶流温度は、セミコークスAの方がセミコークスBよりも低い傾向が認められる。これは、上述したようにセミコークスAの灰分の塩基度（CaO/SiO$_2$）は1.12と高く、塩基性であることに対して、セミコークスBの灰分の塩基度（CaO/SiO$_2$）は0.48と低く、酸性であることによると考えられる。

また、軟化、溶融、溶流温度は、セミコークスAおよびセミコークスBとも実用PCI炭の標準炭B炭に較べて大幅に低い。これは、上述のようにFeOが形成され、これがSiO$_2$とAl$_2$O$_3$との低融点化合物を形成し溶融温度が低下するためと考えられる。したがって、灰分の付着の制御が技術課題と想定された。
5.9 PCIとしての実用性評価結果の締め

（1）搬送性評価
セミコークス A、セミコークス Bともに搬送重量当たりの搬送負荷圧損量は、実用 PCI炭の標準炭 B炭と同等であり、搬送性は問題なかった。

（2）燃焼性評価
- セミコークス A、セミコークス Bともに炉内ガス温度、粒子温度、燃焼輝度は実用 PCI炭の標準炭 B炭よりも高く、燃焼状態は良好であった。
- セミコークス A、セミコークス Bともに燃焼効率は標準炭 B炭を上回り、優れた燃え切り性を示した。

（3）カーボンソリューションロス反応性評価
セミコークス A、セミコークス Bともにカーボンソリューションロス反応（CO₂ガス化）による重量減少が標準炭 B炭に比べ顕著に現れており、両コークスのカーボンソリューションロス反応性は優れていると判断できる。

（4）SiO₂(g)の発生性評価
セミコークス Aおよびセミコークス Bのチャーは、1,500℃および1,600℃におけるSiO₂の活量aSiO₂の低下幅が標準炭 B炭チャーに比べ小さいため、SiO₂(g)の発生による溶鉄中のSi上昇は少ないと判断できる。

（5）灰滓化・灰滴下性評価
灰の軟化、溶融、溶流温度は、セミコークス Aおよびセミコークス Bとも標準炭 B炭に較べて大幅に低いので、灰滓化・灰滴下は問題ない。一方、灰の溶融温度が低いことにより、吹込みランス～羽口付近での灰付着が起こりやすくなるため、灰分の付着制御技術が課題となる。

以上より、セミコークス A、セミコークス Bともに、搬送性、燃焼性、カーボンソリューションロス反応性、SiO₂(g)の発生性、灰滓化・滴下性に問題なく、PCIとしての利用は充分可能と判断する。
6. 褐炭セミコークスの鉄鉱石焼結用炭材としての実用性評価

6.1 焼結鉱について
近年、鉄鉱石は高品位塊鉱資源が少なくなり、大部分が粉鉱鉱石として輸入される。この粉鉱を高炉に供給するための方策として、粉鉱鉱石を塊成化して高炉投入する焼結鉱方式が採用されており、高炉の鉄鉱石フィードの約7割を占める。

本件は、凝結材かつ焼結過程で燃料となる粉コークスや無煙炭代替としての褐炭セミコークスの評価を行う。

6.2 焼結工程の技術課題
セミコークスの鉄鉱石焼結用炭材として評価すべき技術課題を図6-1に示す。
6.3 鉄鉱石焼結用炭材の製造とその性状

鉄鉱石焼結用炭材は、鉄鉱石周囲に融液を生成するための熱源であり、一般には高温で着火するのが望ましく、粉コークスが一般的である。褐炭からのセミコークスは、含有%Nが低く、焼結ブリーズとして利用できれば、焼結排ガスのNOxの低減も図れる利点がある。ただし、コークス中の含有%Nは、配合石炭の銘柄に依存する。したがって、焼結排ガスのNOxの変化のトレーサビリティーを確保するため粉コークスは、単銘柄（準強炭）にて乾留し製造した。

また、一方で対象とする熱分解プロセス（Coal Plus）からのセミコークスは、過年度のJOGMEC共同スタディにおいて褐炭焼結用に灰分を含めていたため、焼結用ブリーズとしては粒径が小さすぎた。そこで、今回新たに褐炭コークスも褐炭を乾留し製造した。乾留には50kg乾留炉（レトルト寸法：W390×D420×H500mm）を用い、乾留温度は約1,070°Cとした。褐炭は溶融しないので、均一な熱履歴の確保のため、粒径を25mm以下に調整した。

（1）乾留コークスの性状

図6-2に準強炭の乾留後、褐炭の乾留前後の写真を示す。褐炭（高揮発分非粘結炭）は、溶融しないで固相のまま炭化し、等方性組織となる。したがって、褐炭の粒径>25mmの試料を粉砕した乾留前の粉砕履歴が乾留後の粒径を支配していることが特徴である。乾留歩留まりは、単銘柄準強炭の78.4%に対して褐炭は50.7%であった。

乾留コークスの組成分析を表6-1に示す。褐炭コークスの窒素分、硫黄分は準強炭コークスに比べ低くなった。褐炭コークスは、乾留によって揮発分が49.2%から1.2%まで低減し、窒素は1.80%から0.67%まで低減できている。一方で、褐炭は灰中の硫黄が2.96%と高く、乾留後も2.95%と変化せず、その結果、全硫黄は、0.12%から0.21%に増加している。窒素分については、乾留により揮発分として大半の窒素が放出されたためと考えられる。一方、硫黄分については、ほぼ灰中硫黄であることから、本件の乾留温度条件では、硫黄は揮発分として放出されず、結果的に、全硫黄の割合が増加したものと思われる。
乾留後のコークス、褐炭コークスは、粉砕にて粒度分布（重量比）：
<1mm：40%、1～3mm：30%、3～5mm：30%に調整した。

図 6-3 に、粉砕、粒度調整後のコークス、褐炭コースの粒度分布を示す。コークスと褐炭コースの粒度分布はほぼ同等の粒度分布に調整されており、以下の鉄鉱石焼結用炭材の評価としては、その炭材の性状差によって評価できることを確認した。また、粒度分布は、上記の調整の結果、1mmを分岐とする「ふたコブの粒度分布」を示す。

図 6-4 に、コークスと褐炭コースの粒度の外観写真を示す。特に3～5mmに着目するとコースが丸みを帯びていることに対して褐炭コースは角張っている。これは、褐炭（高揮発分非粘結炭）は、溶融しないで固相のまま炭化したためと考えられる。
（2）鉄鉱石焼結用の原料配合

表 6-2 に、鉄鉱石焼結用として用いた鉄鉱石と副原料の成分を示す。鉄鉱石は実機焼結の焼結用粉を用いた。副原料は、塩基度調整用の石灰石、造粒用の生石灰、焼結鉱の高温性状用の MgO 源としてドロマイトおよびスラグ量調整用として珪石の 4 銘柄を用いた。

配合は、塩基度 CaO/SiO$_2$=2.1 を目標とし、生石灰 2.0%、ドロマイト 1.0%、また、炭材は 4.2%にて配合した。

図 6-4 粒径調整後の乾留コークスの外観

<p>| 表 6-2 焼結原料の成分 |
| 分析値（%） |</p>
<table>
<thead>
<tr>
<th>T-Fe</th>
<th>FeO</th>
<th>C</th>
<th>CaO</th>
<th>SiO$_2$</th>
<th>MgO</th>
<th>Al$_2$O$_3$</th>
<th>P</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>鉄鉱石</td>
<td>64.51</td>
<td>0.19</td>
<td>0.08</td>
<td>0.03</td>
<td>1.49</td>
<td>0.04</td>
<td>1.36</td>
<td>0.066</td>
</tr>
<tr>
<td>石灰石</td>
<td>0.140</td>
<td><0.10</td>
<td>12.25</td>
<td>55.18</td>
<td>0.14</td>
<td>0.24</td>
<td>0.04</td>
<td>0.003</td>
</tr>
<tr>
<td>生石灰</td>
<td>0.070</td>
<td><0.10</td>
<td>0.98</td>
<td>90.46</td>
<td>0.48</td>
<td>0.36</td>
<td>0.20</td>
<td>0.009</td>
</tr>
<tr>
<td>ドロマイト</td>
<td>0.212</td>
<td><0.10</td>
<td>13.00</td>
<td>30.73</td>
<td>0.50</td>
<td>20.67</td>
<td>0.19</td>
<td>0.003</td>
</tr>
<tr>
<td>硅石</td>
<td>2.18</td>
<td>0.49</td>
<td>0.27</td>
<td>0.45</td>
<td>86.38</td>
<td>0.53</td>
<td>3.90</td>
<td>0.029</td>
</tr>
</tbody>
</table>

6.4 混合造粒性（擬似粒子化）

混合は、原料ごとにコンクリートミキサーにて 30 秒間攪拌した後、水分を添加して 1 分間攪拌した。その後、すべての原料をコンクリートミキサーにて 30 秒間攪拌し、混合原料の水分を確認した。造粒は、混合原料をドラムミキサーに入れ、2 分間混練し造粒を実施した。造粒中は希薄散水（ノズル散水：2.2L/min）を行い、水分量を 7.2%に調整している。

図 6-5 に、造粒物の粒度分布を示す。焼結造粒物の粒度分布は、図 6-3 に示した両炭材の 1mm を分岐とする「ふたコブの粒度分布」を 2mm 程度高粒径側に移動させた分布を示している。
6.5 焼結鉱の性状と組織

(1) 焼結鉱の外観

図 6-6 に、鍋試験での焼成後の焼結体の外観を示す。焼結は、粗粒鉱石（被溶体）が骨材となり粉鉱石（溶剤）の溶融によって粉体の凝集・結合、粉体充填構造の再配列が起こり、気孔（空隙）が統合・減少し、密充填化（緻密化）が進む。ただし、完全に溶融せず部分溶融なので焼結体は多孔構造となる。コークスに較べて褐炭コークスの場合が、密充填化（緻密化）が進み、部分溶融域が認められる。

図 6-6 焼成後の焼結体の外観
図 6-7 に、焼成後の鍋から回収した焼結体の外観を示す。コークスに較べて褐炭コークスの場合が、密充填化（緻密化）が進み、部分溶融域が認められる。
(2) 焼結鉱の実用強度
図 6-8 に、焼結鉱のコークス焼成と褐炭コークス焼成の焼結鉱の冷間強度の比較を示す。落下強度および回転強度においてコークス焼成に較べて褐炭コークス焼成の場合は等か、それを上回っており、図 6-6 および図 6-7 の焼結体の観察結果と一致する。特に炭材燃焼後は冷風が吸引され強度発現がしにくい上部においてコークス焼成に較べて褐炭コークス焼成のほうが強度は高い。

図 6-8 焼結体の冷間強度の比較

図 6-9 に、焼結鉱の低温還元粉化率（RDI:Reduction Disintegration Index）と JIS 還元率との比較を示す。低温還元粉化率はコークス焼成に較べて褐炭コークス焼成のほうが低く、冷間強度に加えて熱間強度も良好である。一方で、JIS 還元率は、中部ではコークス焼成よりも褐炭コークス焼成が高く、下部ではその傾向は逆転する。これは、焼結鉱の組織の違いによるものと考えられる。

図 6-9 焼結体の低温還元粉化率の比較
6.6 焼結用炭素材としての評価結果の締め

（1）褐炭コークスの性状
褐炭コークスは角ばり、炭化前の粒径が炭化物の粒径を支配する。準強炭は溶融炭化するのでコークスが丸みを帯びていた。また、褐炭コークスはコークスに比べ単窒素分、硫黄分が少なかった（原料褐炭による）。

（2）混合造粒性
褐炭コークスおよびコークス両者の造粒物（疑似粒子）の粒径分布は、ほぼ同じであり、有意な差は認められなかった。通気抵抗の観点からは、粒径分布が狭い褐炭コースの方が有利と考えられる。

（3）炭材燃焼速度（焼結鉱焼成）
コークス燃焼に較べて褐炭コースの場合は、燃焼速度が早かった。また、NOやSO₂の排出濃度は、褐炭コースの方が低く良好であった。

（4）焼結鉱の冷間および熱間強度
コークス焼成に較べて褐炭コース焼成により製造した焼結鉱の方が冷間強度、熱間強度ともに良好であった。

以上、褐炭コースは実使用の準強炭コースに比べ、炭材としての造粒性は選色なく、燃焼性に優れ、製造された焼結鉱の冷間・熱間強度も優れることから、焼結用炭素材としての利用は可能と評価する。
7. 褐炭合成油等からのピッチ製造

7.1 検討課題
昨年度は、Cat-HTRプロセスからの褐色合成油を触媒で改質し、等方性およびモザイク状メソフェーズピッチを市販ピッチと同等の収率で製造できた。今年度はモザイク状メソフェーズピッチをさらに高品質に改質して、流れ構造を有するニードルコークス用ピッチの製造可能性について検討する。
また、熱分解のCoal Plusプロセスからの褐色タール油が同様の手法でピッチ化が可能かを検討する。

7.2 検討手法
図 7-1 にピッチからの光学異方性組織の発達段階を示した。400〜450℃におけるピッチの軟化溶融状態において、易黒鉛化性ピッチでは芳香族縮合環化が進行し、a) 等方性マトリックスから b) 微細球晶が出現、この球晶が c) 合体・成長することにより、より大きな球晶となりさらに d) 合体・再配列の後、流れ構造を有するバルクメソフェーズとなることが知られている。現状のピッチは中粒モザイク程度の球晶まで発達しているが、図中の e) から d) 間の矢印の様に、更なる成長・合体が進行していない。

図 7-1 ピッチ液相からの球晶出現および異方性構造の展開
出典：先端炭素材の調整と応用 九州大学資料 (4)
従って、この軟化溶融状態において、球晶の成長を積極的に促進するか、阻害因子を取り除く下記手法を検討した。

(1) 溶剤分別（ビッチ中の重質成分の分離）
(2) 水素ドナー物質との共炭化反応
(3) ビッチのマイルドな水素化
(4) 組み合わせ処理の検討
 （上記の手法を組み合わせ、ニードルコークス原料への可能性を検討する。）
(5) 褐炭タール油のピッチ化
 （褐炭タール油についても、褐炭合成油で行った手法でピッチ化が可能か検討する。）
7.3 ピッチ化および炭化試験装置

本試験における褐炭合成油や製造ピッチの溶剤分別、ピッチ化反応（芳香族化、環化重合）、ピッチ調整（低沸点成分除去）および炭化処理に使用した試験装置についての概略は以下のとおり。

（1）溶剤分別装置

原料油及びピッチ調整品の溶剤分別には、ソックスレー抽出器（図 7-2）を使用した。左の 2 台は小型ソックスレー抽出器で、右の 1 台が超大型ソックスレー抽出器である。
（2）ピッチ化反応装置:
ピッチ化反応装置として、オートクレーブ（図7-3）を使用した。

図 7-3 オートクレーブ
（3）ピッチ調整装置:

ピッチ化反応で得られた反応生成物からピッチを得るためには、減圧蒸留による低沸点成分の留去が有効であることから、本試験ではエバポレーター（図 7-4-a）を使用した。

当該装置の使用に際し、軽質の低沸点成分（留出分）と重質のピッチ成分（残留分）を効率的に分離するため、蒸発成分滞留防止対策（図 7-4-b：ナスフラスコ上部内壁に凝集・付着しないようにフラスコ全体を保温）及び留出分凝集液の逆流防止対策（図 7-4-c：蒸留の最終段階である出口内壁に通気性油吸収材を張り付ける）を講じた。

図 7-4 エバポレーター及び蒸留改善対策
（4）炭化装置
ピッチ化反応より得られた各種ピッチの炭化処理には、図 7-5 に示す炭化装置を使用した。この炭化装置は、3 段温度制御方式横型炭化炉、同温度制御装置、石英反応管（内径 40×長さ 800mm）、窒素流量計、タールトラップ、排ガスラインからなっている。
7.4 石油系共炭化剤の選定と改質
（1）共炭化剤の選定
モザイク異方性構造を有する褐炭合成油ピッチの共炭化剤として石油系残渣留分（以下「石油系残渣」という。）の検討を行う。検討した石油系残渣は他の残渣油の中で硫黄の含有量が最も少なく、芳香族性が高く、かつ硫黄などのヘテロ元素も少ないとため、良質な共炭化剤の原料となりえる一方で、分解残油であるため、平均分子量が小さく、十分に重質化していない点が課題となる。
このため、石油系残渣を熱処理し、重質化したピッチを分離することで、共炭化剤として使用することとした。
7.5 ピッチの製造結果
（1）ピッチの処理内容と条件
昨年度は、褐炭合成油にPVCを添加して調製したPシリーズピッチ（P2-P及びP3-P）において異方性炭素由来のモザイク構造が確認された。本スタディでは、P2-Pと同条件で製造したP2-PIIの「モザイク」構造を「流れ」構造へと転換する可能性について検討する。

PVC触媒によるピッチ化処理（基本PVC処理）をベースとして、原料変更、水素ドナー物質による水素化、石油系残渣の共炭化剤処理も含め、製造したピッチを表7-1に纏めた。また、P5-P以外のピッチではそれぞれキノリン抽出によるQS、QI分も製造し、試験を行った。

表 7-1 製造したピッチと処理内容

<table>
<thead>
<tr>
<th>ピッチ名</th>
<th>処理</th>
<th>原料</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2-PII</td>
<td>PVC触媒ピッチ化</td>
<td>合成油</td>
</tr>
<tr>
<td>P4-P</td>
<td>PVC触媒ピッチ化</td>
<td>合成油処理残渣</td>
</tr>
<tr>
<td>P5-P</td>
<td>PVC触媒ピッチ化</td>
<td>タール油</td>
</tr>
<tr>
<td>P2-PII-H</td>
<td>水素ドナー物質によるマイルドな水素化</td>
<td>P2-PII</td>
</tr>
<tr>
<td>石油系残渣改質①,②</td>
<td>共炭化剤の熟処理改質</td>
<td>石油系残渣</td>
</tr>
</tbody>
</table>
（2）光学異方性組織の展開結果

P2-Pと同条件で製造したピッチP2-PⅡ炭化物の偏光顕微鏡写真を図7-6に示す。P2-PⅡ炭化物はP2-Pと同様に中粒モザイク（Mm）主体の光学異方性組織を有しており、このモザイク構造から流れ構造に転換する事が本スタディの主眼となる。

図7-6 P2-PⅡ炭化物の偏光顕微鏡写真

図7-7には、本スタディで行った褐炭合成油の改質手法と結果を示した。P2-PⅡのQSと石油系残渣改質物との共炭化により部分的に流れ構造が出現した。マイルドな水素化を施したP2-PⅡ-Hはモザイクで留まり、異方性の展開に障害とされる酸素の低減が不十分であったと思われる。一方、合成油を脱酸素後、ピッチ化したP4-Pはコーカス収率が極めて低いものの、流れ構造となった。これら結果から、脱QIと石油系残渣の共炭化およびピッチ化前脱酸素は、褐炭合成油ピッチの質の向上に寄与できると思われる。

図7-7 褐炭合成油の改質手法と結果
7.6 ピッチ製造のまとめ

昨年度、褐炭合成油を PVC と反応させ得られたモザイク状メソフェーズピッチ（P2-PⅡ）をベースとして、ニードルコークス用ピッチの製造可能性を検討した。

(1) ニードルコークス用ピッチの製造について
① キノリン分別（キノリン可溶分 QS、キノリン不溶分 QI）による重質分の除去
② マイルドな水素化
③ 石油系残渣等との共炭化
　①と③を組み合わせ、キノリン可溶分 QS と共炭化材との共炭化によって、ニードルコークスの特徴である「流れ」構造が、炭化物に始めて出現し、溶剤分離と共炭化の組み合わせ是有効であった。一方、マイルドな水素化処理では、顕著な効果が認められなかった。

(2) 脱酸素の必要性
　上記①～③の処理では、期待されたピッチ中の酸素（「流れ」構造阻害因子）の低減が充分ではなく、P4-P のようにピッチ化の前に酸素の低減を行うと、全面に「流れ」構造の展開が可能ではないかと思われる。

(3) 全面流れ構造に向けた方策
　酸素を含まない合成油処理残渣を PVC でピッチ化した P4-P では炭化収率は低いものの全面流れとなったので、ピッチ前脱酸素は有力な方策である。
　また、P2-PⅡ-QS と石油系残渣改質②の共炭化でも流れ構造が出現した。この方法は、水素化工程が不要のため、経済性は有利となりうる。
8. 事業性の1次FS

8.1 検討する事業モデル

褐炭改質設備（Cat-HTR プロセスおよび Coal Plus プロセス）をスタンドアローンで褐炭山元に建設し、追加処理設備を付加し最終製品まで製造する前提とした。

設備規模は両プロセスとも 80万t/年（含水褐色基準）をベースとしたが、液収率の高いCat-HTR プロセスでは 16万t/年（正確には 15.6万t/年だが、以降も概数で記す）ケースも追加し、小規模投資の可能性も検討した。

Cat-HTR プロセスおよび Coal Plus プロセスから得られる改質炭（セミコークス）はそのまま PCI炭代替として販売する。
合成油（タール油）はさらに処理して炭素材原料用ビッチ 4種とニードルコースを製造する。ビッチとニードルコースは以下とした。
① 準ニードルコース用ビッチ（製造した部分流れ構造のビッチ）
② バインダービッチ（製造した中粒モザイクビッチ）
③ 高密度等方性炭素材用ビッチ（製造したビッチの QI成分）
④ 等方性ビッチ（製造したビッチの QS成分）
⑤ ニードルコースビッチをコーラーで炭化して製造（水素化処理により全面流れ構造のニードルコース用ビッチが製造可能と仮定した）

今回のスタディでは褐炭改質プロセスとビッチ製造プロセスの組み合わせによる経済性の変化を検討する。
原料褐炭は A酸とし、鉱山から 100km先の Banjarmasin港に改質PCI炭や機能材コークス用ビッチや液体燃料など製品を輸送する前提とした。
改質炭は Banjarmasin港から輸出する前提でシンガポール FOB価格とし、液体製品は Pertaminaとの引き取りを想定し、販売価格はシンガポールFOBにシンガポール＝インドネシア間の輸送費1.5$/tを加えた価格を設定した。

①外部よりユーテリティ等を購入することなく、自家設備のみで自立して操業ができる設
8.2 プロセスの検討と構成
（1）想定する各処理プロセス
① ケースのまとめ
検討する①～⑥のケースを製品構成とともに表8-1にまとめた。

<table>
<thead>
<tr>
<th>ケース</th>
<th>褐炭処理量(万t/年)</th>
<th>①褐炭改質</th>
<th>②合成油水素化</th>
<th>③PGC改質</th>
<th>④キノリン分離</th>
<th>⑤石油系残渣改質</th>
<th>⑥コーナー製品</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>80</td>
<td>CoalPlus</td>
<td>なし</td>
<td>あり</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>b</td>
<td>80</td>
<td>CoalPlus</td>
<td>なし</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>c</td>
<td>80</td>
<td>CoalPlus</td>
<td>なし</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
</tr>
<tr>
<td>d</td>
<td>80</td>
<td>CoalPlus</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
</tr>
<tr>
<td>e</td>
<td>80</td>
<td>Cat-HTR</td>
<td>なし</td>
<td>あり</td>
<td>なし</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>f</td>
<td>80</td>
<td>Cat-HTR</td>
<td>なし</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>g</td>
<td>80</td>
<td>Cat-HTR</td>
<td>なし</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
</tr>
<tr>
<td>h</td>
<td>80</td>
<td>Cat-HTR</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
</tr>
<tr>
<td>i</td>
<td>16</td>
<td>Cat-HTR</td>
<td>なし</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
</tr>
</tbody>
</table>

表8-1 検討するケース毎のプロセス構成と製品
8.3 経済性試算
（1）前提条件
経済性試算の前提条件を表8-2に示す。

表8-2 経済性試算のための前提

<table>
<thead>
<tr>
<th>為替</th>
<th>110 (円/USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>稼働時間</td>
<td>7,500 (hr/y)</td>
</tr>
<tr>
<td>褐炭処理量</td>
<td>800,000 (t/y)</td>
</tr>
<tr>
<td>褐炭水分</td>
<td>0.340</td>
</tr>
</tbody>
</table>

追加水量比（褐炭基準、Cat-HTR）	0.125
燃料用褐炭比（褐炭基準、Cat-HTR）	0.060
ガス発生量（褐炭基準）	0.112 (Cat-HTR) 0.357 (Coal Plus)
硫安収率（褐炭基準、Coal Plus）	0.006
硫黄収率（褐炭基準、Coal Plus）	0.001
軽油収率（褐炭基準、Coal Plus）	0.006
水溶性有機物（褐炭基準、Cat-HTR）	0.079
改質炭/セミコークス収率（褐炭基準）	0.477 (Cat-HTR) 0.565 (Coal Plus)
合成油/タール油収率（褐炭基準）	0.332 (Cat-HTR) 0.065 (Coal Plus)
水素比（合成油基準）	0.085 (Cat-HTR) 0.039
水素消費率（合成油基準）	0.075
水素化水収率（合成油基準）	0.834
水素化ボトム収率（水素化油基準）	0.800
添加PVC比率（水素化ボトム基準）	0.080
P2-PII収率（合成油＋PVC基準）	0.514 (Cat-HTR) 0.750 (Coal Plus)
キノリン可溶分（P2-PII基準）	0.244
溶媒キノリン比（P2-PII基準）	3 (Cat-HTR) 1 (Coal Plus)
改質石油系残渣収率	0.244
メタン収率（水溶性有機物基準）	0.346
水素収率（メタン基準）	0.288

<table>
<thead>
<tr>
<th>価格 ($/t)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>セミコークス</td>
<td>100</td>
</tr>
<tr>
<td>ニードルコークス</td>
<td>4,500</td>
</tr>
<tr>
<td>準ニードルコークス用ビッチ</td>
<td>2,000</td>
</tr>
<tr>
<td>バインダービッチ</td>
<td>1,200</td>
</tr>
<tr>
<td>高密度等方性炭素用ビッチ</td>
<td>1,200</td>
</tr>
<tr>
<td>等方性ビッチ</td>
<td>800</td>
</tr>
<tr>
<td>タール</td>
<td>300</td>
</tr>
<tr>
<td>ガス</td>
<td>41</td>
</tr>
<tr>
<td>硫安</td>
<td>56</td>
</tr>
<tr>
<td>硫黄</td>
<td>25</td>
</tr>
</tbody>
</table>
償却年数=7年
設備金利=0% (100%自己資本)
割引率=11%
法人税=25%
自己資本比率=100%

前提条件に掲げた高機能炭素材用ピッチの価格については、情報量が少ない。近年高騰が続くニードルコーカス用ピッチ価格は、なかなか正確な情報が得られないが、これと同等のグレードである米国の炭素繊維用メソフェーズピッチは1.5S/lb=3,300$/tの情報がある。
一方で、中国では汎用性ピッチの生産があるが、コールタールベースの低グレード含浸用ピッチは900$/t弱であり、また、欧州のアルミナ電極用コールタールピッチは700~800$/tである。そこで、本スタディでは、製造したピッチの中で、最も安い高機能材料向け等方性ピッチ価格を800$/tとし、最も高い流れ構造を有する準ニードルコーカス原料ピッチを2,000$/t、中間価格のモザイク構造のバインダーピッチおよび高密度炭素材料用ピッチを1,200$/tとおいて算定することとした。

経済性試算結果
検討ケース毎の経済性試算結果を表8-3に示す。
褐炭改質プロダクトの内、収率の高いPCI炭代替コークスは、石炭FOB市況価格が100$/tと低く、高額の利益に繋がらない。
一方、プロダクト収率の低い褐炭合成油から製造する原料ピッチおよびニードルコーカスは、近年、中国マーケットを中心に市況が高騰しており、これらピッチ関連製品の収益がこの事業の大半を占める。このため、プロセスの設備費は安価だが、タール油が5~7%程度しか得られないCoal Plus熱分解プロセスよりも、設備費は割高だが、合成油が約30%得られるCat-HTRプロセスの方が圧倒的に経済性に優れる結果となった。

(2) 経済性試算結果
検討ケース毎の経済性試算結果を表8-3に示す。
褐炭改質プロダクトの内、収率の高いPCI炭代替コークスは、石炭FOB市況価格が100$/tと低く、高額の利益に繋がらない。
一方、プロダクト収率の低い褐炭合成油から製造する原料ピッチおよびニードルコークスは、近年、中国マーケットを中心に市況が高騰しており、これらピッチ関連製品の収益がこの事業の大半を占める。このため、プロセスの設備費は安価だが、タール油が5~7%程度しか得られないCoal Plus熱分解プロセスよりも、設備費は割高だが、合成油が約30%得られるCat-HTRプロセスの方が圧倒的に経済性に優れる結果となった。

① 褐炭 80万t/年の場合【(a) ～ (h) ケース】
Cat-HTRプロセスの場合はCoal Plusプロセスの場合に比較し、改質設備費用そのものが100億円程度高額なうえに、液収率が高いため、ピッチ化設備等も大きくなり、300億円を越える設備費となる。ニードルコーカスを製造(h)ケースの場合はコーラーが追加されるため、500億円を超える設備費となった。
等方性ピッチ+高密度等方性炭素用ピッチ製造の(e)ケースの場合はIRR=13.5%と低く、それ以外のバインダーピッチ製造の(f)ケースは同26.4%、準ニードルコーカス用ピッチ製造(g)ケースは同57%、およびニードルコーカス製造(h)ケースは同39.5%と高いIRRとなった。ニードルコーカスまで製造するケースでは、初期水素化やコーラー設備が高く、IRRは準ニードルコーカス用ピッチ販売の場合を下回った。
Coal Plusプロセスでは、設備費は最大でもコーラー追加の(d)ケースで290億円となりCat-HTRプロセスの場合よりも安価であったが、低液収率のため、ピッチ製造量が小さく、
収入が低いため、IRR は低くなった。準ニードルコークス用ビッチ製造の (c) ケースのみIRR は 15%を越え、19.6%となった。

② 褐炭 16 万 t/年使用の場合 【(i) ケース】
Coal Plus プロセスで随一 IRR が 15%を越えた (c) ケースと同じピッチ製造量を Cat-HTR
プロセスで製造した場合の設備スケールが褐炭使用量 16 万 t/年に相当する。
この場合、設備費 147 億円の小型投資ケースであっても、準ニードルコークス用ビッチが
約 2.8 万 t/年製造でき、IRR は 27%となり、充分な経済性が見込めることも示唆された。

このように、ニードルコークス用ビッチを含む高機能炭素材用ビッチの販売価格の推定精
度については再検討が必要かもしれないが、小規模投資で経済性の高い事業として成立する
ポテンシャルが十分期待できると考える。
表 8-3 ケース毎の経済性試算結果

<table>
<thead>
<tr>
<th>ケース</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>機材改質プロセス</td>
<td>CoalPlus</td>
<td>CoalPlus</td>
<td>CoalPlus</td>
<td>CoalPlus</td>
<td>Cat-HTR</td>
<td>Cat-HTR</td>
<td>Cat-HTR</td>
<td>Cat-HTR</td>
<td>Cat-HTR</td>
</tr>
<tr>
<td>石油系残渣改質</td>
<td>なし</td>
<td>なし</td>
<td>あり</td>
<td>なし</td>
<td>なし</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
</tr>
<tr>
<td>キノリン分離</td>
<td>なし</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>あり</td>
<td>なし</td>
</tr>
</tbody>
</table>

機材改質	198	198	198	198	298	298	298	298	112
水素化	26								69
PVC改質	8	8	8	6	20	20	16	8	
キノリン分離	13	13	10	34	34	27	13		
石油系残渣改質	15	12	39	31	15				
コーカー	39								105

| 機材改質費合計 | 206 | 219 | 233 | 291 | 318 | 391 | 545 | 147 |

収入	セミコーク	100	32.8	32.8	32.8	27.7	27.7	27.7	5.4
ニードルコークス	5,000	60.9							313.1
塩ビニールコークス用ビッチ	2,000	62.9							
等方性ビッチ	800	64.2							
高密度等方性炭素用ビッチ	1,200	6.3	6.3	4.2	32.1	32.1	21.4	6.3	
バインダービッチ	1,200	128.5							
ダル	300	5.9	5.9	5.9	30.4	30.4	30.4	29.9	5.9
ガス	41	8.4	8.4	8.4	3.3	3.3	3.3	5.1	0.6
燃安	56	0.3	0.3	0.3	0.3				
煉黄	25	0.03	0.03	0.03	0.03				

| 収入合計 | 72.3 | 66.0 | 116.3 | 112.6 | 189.8 | 157.7 | 414.7 | 395.4 | 81.2 |

原料費	褐炭	30	26.4	26.4	26.4	26.4	26.4	26.4	5.2
石油系残渣	500	7.9	5.2						
PVC	1,500	4.5	4.5	4.5	3.0	23.1	23.1	15.4	4.5

| 原料費合計 | 30.9 | 30.9 | 38.8 | 34.7 | 49.5 | 49.5 | 89.7 | 68.6 | 17.6 |

製造費	機材改質	622	5.0	5.0	5.0	5.0	5.0	5.0	1.0		
水素化	2,000	0.7							3.5		
PVC改質	2,000	0.7	0.7	0.7	0.5	3.5	3.5	3.5	2.3	0.7	
キノリン分離	2,000	0.4	0.4	0.25	1.9	1.9	1.3	0.4			
石油系残渣改質	2,000	1.2	0.8						6.0	4.0	1.2
コーカー	4,000										3.9
保全費	5	%	10.3	10.9	11.7	14.6	15.9	17.6	19.6	27.3	7.4

| 製造費合計 | 16.0 | 17.0 | 18.9 | 22.5 | 24.4 | 28.0 | 36.0 | 47.3 | 10.6 |

運送費	105	5.8	5.8	5.9	5.8	5.7	5.7	6.5	5.8	1.3
費用計	52.6	53.7	63.6	62.9	79.6	83.2	132.1	121.7	29.4	
税価値税（7年定率）	29.4	31.2	33.3	41.6	45.4	50.3	55.9	77.9	21.0	
営業利益	19.7	12.4	52.7	49.6	110.2	74.5	282.5	273.7	51.8	
単純投資回収年	10.5	17.7	4.4	5.9	2.9	4.7	1.4	2.0	2.8	
IRR	%	-0.6	-7.3	19.6	9.0	26.4	13.5	57.0	39.5	26.9

72
ピッチ販売価格は、経済性に大きく影響する。中でも影響が大きいと想定される小規模のケース（i）において、ニードルコークス用ピッチ価格を変動させてその影響を検討した。

図8-1にピッチ価格とIRRの関係を示した。ベースはピッチ価格を2,000$/tとしてIRRは27%と算定したが、この価格が-30%変動した1,400$/tとなった場合でも、IRRは15%を維持できることがわかる。

図8-1 ピッチ価格とIRRの関係
（4）ニードルコークス収率の影響
合成油ピッチからニードルコークスの収率は今回の試験からは明らかではなかったので、ケース（h）ではベースケースとして共炭化での炭化収率 0.58（58%）をニードルコークスの炭化収率に仮定し、IRR=39.5%を得た。ニードルコークス生成量は経済性に大きく影響するため、炭化収率を変動させて、IRRへの影響を検討した。
表 8-4 には、炭化収率を変化させたときのニードルコークスの得率の変化を示し、図 8-2にはニードルコークスの収率とIRRの関係を示した。この結果、ニードルコークス収率が0.24以上であれば、IRR=15%以上が維持できることが解った。

表 8-4 ニードルコークス収率の検討

<table>
<thead>
<tr>
<th></th>
<th>水素化ボトム率（－）</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>炭化収率</td>
<td>1.00 0.80 0.60</td>
<td>0.58 0.40 0.20 0.10</td>
</tr>
<tr>
<td>褐炭合成油からのニードルコークス収率（－）</td>
<td>0.80 0.64 0.48 0.46 0.32 0.16 0.08</td>
<td></td>
</tr>
<tr>
<td>IRR（％）</td>
<td>71.3 56.3 41.0 39.5 24.6 5.2 -8.9</td>
<td></td>
</tr>
</tbody>
</table>

図 8-2 ニードルコークスの収率とIRRの関係
9. 本共同スタディの締め

9.1 本共同スタディの締め
表 9-1 に本スタディの結果を要約する。

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. セミコーキスの実用性評価</td>
<td>(1) 褐炭の熱分解セミコーキスは熱分解条件によって揮発分が調整できる。揮発分20%程度のセミコーキスのPCIとしての実用性および揮発分2%程度のセミコーキスの焼結用炭素材としての実用性を検討した。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) PCI実用性は搬送性、燃焼性、灰付着性、CO₂との反応性、SiO₂発生性で評価されるが、褐炭セミコーキスは実使用の低揮発分PCI炭と比べ、全ての評価項目で優れており、PCIとして充分使用可能と判断される。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) 焼結用炭素材の実用性は、焼結用原料との造粒性、燃焼性および焼結産の冷間並びに熱間強度で評価される。褐炭セミコーキスは、すべての項目で実使用されているコークスブリーズより優れており、代替費としての利用が可能である。</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2. ピッチ製造・評価 | (1) ニードルコークス用ピッチの製造について昨年度、褐炭合成油をPVCと反応させ得られたモザイク状メソフェーズピッチ（P2-PⅡ）をベースとして、以下の処理を行いニードルコークス用ピッチの製造可能性を検討した。①キノリン分別（キノリン可溶分QS、キノリン不溶分QI）②マイルドな水素化③石油系残渣改質物との共炭化①と③を組み合わせ、キノリン可溶分QSと共炭化材との共炭化によって、ニードルコークスの特徴である「流れ」構造が、部分的に出現した。②については、顕著な効果が認められなかった。 | |
| | (2) ①～③の処理では、期待されたピッチ中の酸素（「流れ」構造阻害因子）の低減が充分ではなかった。 | |
| | (3) 合成油処理残渣をPVCで改質したピッチからは、極めて炭化物収率が低いものの「流れ」構造が出現した。脱酸素後のピッチ化は、全面「流れ」構造の可能性がある。 | |
| | (4) キノリン不溶分QIの炭化物は、10～20μm程度のモザイク構造を有する単独粒子であった。高密度等方性カーボン材料としてのポテンシャルが期待できる。 | |</p>
<table>
<thead>
<tr>
<th>カラム</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. 事業性の 1次 FS</td>
<td>5. 熱分解タール油からも合成油と同様の手法でモザイク組織や一部流れ構造のメソフェーズビッチが製造できた。</td>
</tr>
<tr>
<td>1（1）褐炭 80万t/年ケース</td>
<td>Cat-HTR プロセスでは等方性ビッチ+高密度等方性炭素用ビッチ製造の場合は IRR=13.5%と低く、それ以外のバインダービッチ製造は同26.4%、準ニードルコークス用ビッチは同57%、およびニードルコークス製造は同39.5%と高いIRRとなった。Coal Plus プロセスでは、準ニードルコークス用ビッチ製造ケースのみ IRR は 15%を越え、19.6%となった。</td>
</tr>
<tr>
<td>2（2）褐炭 16万t/年使用ケース</td>
<td>Cat-HTR プロセスで、準ニードルコークス用ビッチが製造できれば 150 億円程度の小規模投資でも IRR は約27%の経済性が期待できる。</td>
</tr>
</tbody>
</table>
10. 今後の課題

本スタディでは、Cat-HTR プロセスから得られた合成油、熱分解プロセスから得られたタール油の高付加価値ピッチの製造検討および熱分解セミコークスの PCI や焼結用炭素材利用実用性評価を行った結果、今後の検討に資する下記結果を得た。

① 熱分解合成油は PVC 触媒を用いて適切な重縮合改質を行えば、ピッチ及び炭化物収率を向上させ、ピッチ炭化物にモザイク状の光学異方性組織を展開させることができた。
② キノリンで分別した可溶分 QS は、石油系残渣改質物と共炭化する炭化物収率は 5 割程度で部分的に「流れ」構造の光学異方性組織が出現した。
③ また、合成油処理物残渣を PVC でピッチ化すれば、炭化物収率は極めて低いかが、全面に流れ構造が出現した。
④ 熱分解セミコークスは、乾留条件によりセミコークス中の揮発分含有率を調製でき、揮発分 20%程度のセミコークスは低揮発分 PCI 炭代替として利用可能であり、揮発分 2%程度のセミコークスは焼結用炭素材（コークスブリーズあるいは無煙炭）代替として利用可能であることが解った。

10.1 ピッチ製造の検討課題

これまでのピッチ製造スタディ結果の概略と今後の方向性のイメージを図 10-1 に示した。

2018 年度は、それほど芳香族性が高くない褐炭合成油からも、触媒改質することにより、経済性のある収率で等方性ピッチや「モザイク状」メソフェーズピッチが製造できた。

2019 年度はさらに高品質の「流れ」構造を有するニードルコークス用ピッチを目指し、溶剤分別や水素供与性のある共炭化剤との反応を行い、部分的にはあるが「流れ」構造を出現させることができた。また、合成油処理残渣の PVC によるピッチ化で、炭化物収率は極めて低いものの、全面「流れ」が出現した。

今後は、ニードルコークス品質の全面「流れ」となるピッチ改質法を継続して検討し、可能性を見極めていく。併せて、現グレードの褐炭改質ピッチの実用性を評価し市場適合性を確認するために、以下に手法を示す。

（1）全面「流れ」構造への方向性

今年度、ピッチ中に「流れ」構造が出現し、ニードルコークスへの第一歩となった。

しかし、炭化物の収率を維持しつつ、全面が「流れ」構造のメソフェーズピッチにまで改質するのは、それほど簡単ではないと思われる。今年度結果から示唆される 2 つの方向性を以下に示す。

① 水素化脱酸素後のピッチ化

P4-P が全面「流れ」構造を与えたことから、脱酸素後のピッチ化は有効である。

ピッチ中のヘテロ元素は官能基として架橋構造になりやすい他、環状化合物は炭素縮合間の生成に障害をもたらす等、ONS 障害⑧と言われている。合成油には酸素以外のヘテロ
元素は少ない所以水素化脱酸素前処理が主体となる。その後のビッチ化に支障がないように、水素化の程度がキーとなる。その後のビッチ化は熱処理反応や PVC 処理の制御により、低い炭化収率の向上を目指していく。

② 溶剤処理ビッチと水素ドナー共炭化剤との共炭化
P2-PIL-QS と石油系残渣改質②の共炭化で部分「流れ」が見出しされたことから、この手法は水素化工序が不要な安価な製造法として可能性がある。最適な溶媒や強力かつ相性の良い水素ドナー共炭化剤との組み合わせを検討し、部分流れから全面流れを狙っていく。

<table>
<thead>
<tr>
<th>2018年度結果</th>
<th>2019年度結果</th>
<th>今後の課題</th>
<th>製品例</th>
</tr>
</thead>
</table>
| ビッチ化成功 | 1.ニードルコークス化検討 | 1.ニードルコークス化の見極め | 炭素電極・キャパシター
褐炭合成油 | ①共炭化 | 原料：褐炭合成油
・石油系残渣ビッチ他共炭化
・ビッチ化前脱酸素
溶剤分別法を駆使した全面「流れ」への見極め |
| | ②水素化処理 | 2.炭素フェライト | 炭素纖維原料
電極等含浸材 |
| | ③溶剤分離 | 2.炭素フェライト | 高密度炭素系電極
上記同様の手法での炭素材グレードの見極め |
| | 1.ニードルコークス化の見極め | 1.標準フェライト | 溶剤用バインダー |
| 等方性ビッチ | 1.ニードルコークス化の見極め | 2.炭素フェライト | 溶剤用バインダー |
| 等方性ビッチ | 等方性ビッチ | 2.炭素フェライト | 溶剤用バインダー |
| | | | 溶剤用バインダー |

図 10-1 ビッチ改質の方向性のイメージ

(2) 炭素材としての実用性評価
これまで、製造した等方性ビッチ、モザイク状異方性ビッチに加え、途中段階ではあるが QS ベースのニードルコース用ビッチおよびそのペアである QI 炭素材について、現状レベルでの炭素材としての実用性評価を行う。

性状スペック、テストビースによる実用物性スペック等を市販品と比較し、適切な品質設計を行った上で、事業性の詳細 FS に反映させていく。
10.2セミコークスの製鉄用炭素材としての検討課題

セミコークスのPCI炭や焼結用炭素材への利用に関して、本スタディのベンチスケール試験結果からは充分利用可能であり、技術的な課題は特に認めらない。
今後は、早期実現に向けた実証試験や経済性の検討が次期取り組みとなるよう。

(1) 大型機での実証試験について

次のステップとしては、PCIや焼結プロセスでの実機規模の実証試験を行うのが常法である。本スタディに興味をもつ鉄鋼メーカー等に働きかけ、大型機での実証試験の必要性も含め、実施に向けた議論を重ねていきたい。

(2) 経済性の追求

PCI炭FOB市況が100$/t程度で推移している現状では、いくら性能が良いPCI炭代替を製造できても、これだけでは経済性は低い。(但し、同市況が200$/t程度になれば、PCI単独事業でも可能性はでてくるものと推察する。)

経済性が成り立つためには、本スタディで指向している様に、褐炭改質プロセスの併産品である合成油やタール油の高付加価値商品への転換が必要となるが、開発途上である。

この褐炭セミコークスの実用の目途を得るためにも、液体プロダクトの高付加価値化を狙いつつも、現状製造できているグレードでの経済性を精査することも重要である。

また、自国に安価な褐炭を有し、かつ今後PCI需要が増加すると思われるインドネシアやベトナム等に絞った地域限定事業モデルの検討も次期課題となると思われる。

以上
参考文献

（1）石炭年鑑 2019

（2）Licella 社 提供資料

（3）鉄鋼便覧 第 5 版 第 1 巻製鉄・製鋼 日本鉄鋼協会（2014）

（4）炭素資源学特論IV-1 先端炭素材の調製と応用 2013 九州大学

（5）芳香族製品及びタール製品の市場調査に関する事業（2018 年度）
一般社団法人日本芳香族工業会